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Abstract
We examine the factors that determine if a grain forecasting model fit to one region can be
transferred to another region. Prior research has proposed examining the area of applicability
(AoA) of a model based on structurally similar characteristics in the Earth Observation predictors
and weights based on the model derived feature importance. We expand on and evaluate this
approach in the context of grain yield forecasting in Sub-Saharan Africa. Specifically, we evaluate
an AoA methodology established for generating raster surfaces and apply it to vector supported
grain data. We fit a series of ensemble tree models both within single countries and across multiple
sets of countries and then test those models in countries excluded from the training set. We then
calculate and decompose AoA measures and examine several different performance metrics. We
find that the spatial transfer accuracy does not vary across season but does vary by average rainfall
and across high, medium, and low yielding regions. In general, areas with higher yields and
medium to high average rainfall tend to have higher accuracy for both model training and transfer.
Finally, we find that fitting models with multiple countries provides more accurate out-of-sample
estimates when compared to models fitted to a single country.

1. Introduction

The potential for predictive models based on Earth
observations (EO) and survey data to assist in fam-
ine early warning, agricultural outlooks, and other
development applications is rapidly growing (Becker-
Reshef et al 2010, Davenport et al 2021, FAO 2016,
Johnson 2014, Kouadio et al 2014, Krell et al 2019,
Lee et al 2024b, Newlands et al 2014, Schauberger
et al 2020, Shukla et al 2021, Zhang et al 2019).
Although the spatial-temporal extent of EO data is
expansive, high quality agricultural survey data and
official statistics are generally limited in spatial and
temporal scope. Limitations on observed data, used
to both train and validate models, raise a perennial
question in all predictive analysis: if we create a fore-
cast model from region A (based on observed out-
comes) can we apply the same model in region B,

where we do not observe or have limited observations
of those outcomes? This question becomes especially
pertinent when trying tomove from research to oper-
ational applications in developing world countries
where data are often limited, and new data streams do
not occur often (Kebede et al 2024, Lee et al 2024a).

Most efforts that explore the spatial transferability
of models rely on some form of clustering or spatial
clustering algorithms (Meyer et al 2019, Meyer and
Pebesma 2021, Ludwig et al 2023). In the context of
agriculture, spatial clustering can identify geograph-
ically proximate areas with similar climatic, water-
use, and soil conditions, crop production patterns,
and other factors that influence agricultural pro-
duction. Cluster-based analyses are a natural start-
ing point for analyzing the spatial transferability of
a model. Spatial clustering can be used to identify
regions with similar rainfall patterns and soil types,
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providing some indication of where, and to what
extent, a model fit in one region could be applied to
another. The advantage of using this approach with
EO products is that they tend to have global extents
and, thus, there is potential to transfer within a wide
spatial extent.

However, EO products are limited in that they
cannot capture (though they can be correlated with)
key factors that can influence production, including
but not limited to different cropping regimes (irrig-
ated vs. non-irrigated), management practices, sup-
ply/cost of labor, and other critical socioeconomic
factors. In addition, the utility of EO products for
forecasting can vary across regions and throughout
the growing season (Davenport et al 2019, Lee et al
2022). For instance, early season precipitation anom-
alies can indicate opportunities to plant earlier or
later, thereby increasing or reducing the productive
growth window before the rains cease. Normalized
difference vegetation index (NDVI), which roughly
estimates photosynthetic activity, may not be very
useful during planting and early growth stages, but
can be a strong indicator of field productivity dur-
ing the mid-to-late season. Thus, the spatial trans-
ferability of a given model may vary by region, sea-
son, and unobserved socioeconomic factors influen-
cing production.

Prior research by Meyer and Pebesma (2021) has
proposed examining the area of applicability (AoA)
of a model based on structurally similar character-
istics in the EO predictors and weights based on
the model-derived feature importance. They build
a metric (known as the Dissimilarity Index) based
on the idea that if a variable has a strong contri-
bution to forecast accuracy in one region, then the
model should be transferable to other regions where
the features of that same variable are similar. We
expand on and evaluate this approach in the con-
text of grain yield forecasting in Sub-Saharan Africa
(SSA). Specifically, we evaluate an AoA methodology
established for generating raster surfaces and apply
it to vector-supported grain data. We fit a series of
ensemble tree models both within single countries
and across multiple sets of countries and then test
those models in countries excluded from the training
set. We then calculate and decompose AoA metrics
and examine several different performance metrics.

We build on the existing literature on spatial
transferability and yield forecast models in several
ways. We test approaches designed for gridded data,
where outcomes are based on continuous latent fields,
with vector data, where each data point repres-
ents aggregate reports of administrative units in a
wide variety of shapes and sizes. We also explore
the seasonality of spatial transferability by examin-
ing if there are environmental or model character-
istics that change the spatial out-of-sample accuracy

through the course of the growing season. Finally, we
contribute to the broader literature on agricultural
yield forecasting by examining what specific factors
might make a model fit to one country (or group of
countries)more transferable andwhat environmental
characteristics might make a country with little to no
agricultural statistics a good candidate for a spatially
transferred model. Our objective is to answer the fol-
lowing questions:

1. What are the key characteristics that make a fore-
cast model fit for one set of countries work in
another country?

2. Can pooling models across multiple countries
provide more accurate out-of-sample estimates
than a model fit to one country or district?

3. Does a forecast model fit early in the growing sea-
son have the same transferability as amodel fit late
in the season?

Our paper proceeds as follows: we present a brief
overview of the current state of EO-driven yield fore-
casting in developing countries, as well as efforts
to evaluate and maximize the spatial transferability
of models. The following section describes the crop
yield statistics and EO data we use for our experi-
ments as well as the models, cross-validation struc-
ture, and evaluation procedures. Results and discus-
sion are presented in the final two sections.

2. Literature review

There is an increasing number of researchers and
institutions using statistical and (or) machine learn-
ing methods to forecast crop yields in the develop-
ing world (van Klompenburg et al 2020). In contrast
to deterministic models, these approaches use EOs,
agricultural statistics, and other sources of socioeco-
nomic data. For example, in studies of Africa, sev-
eral authors have combined EO products with stat-
istical methods and/or machine learning to model or
predict maize yields or crop cover (Davenport et al
2015, 2018, 2019, Lee et al 2022, Lobell et al 2015,
Nakalembe et al 2021).

Spatial out-of-sample prediction can generally be
divided into two different approaches—kriging (for
continuous data) and small area estimation (SAE)
(for discrete data). Kriging is a geostatistical inter-
polation technique that uses the spatial correlation
among data points to estimate unknown values at
unsampled locations. It assumes that the distance
or direction between data points reflects a spatial
correlation that can be modeled (typically with a
variogram) as an unobserved latent field, allowing
for more accurate predictions than traditional lin-
ear interpolation (Cressie 1993, Cressie and Wikle
2015). Kriging and relatedmethods are generally used
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to model latent fields such as precipitation, temper-
ature, elevation, and other geophysical phenomena.
When modeling spatially discrete outcomes (such as
poverty, employment, and/or demographics) where
the underlying spatial process is either unknown or
cannot be modeled, the typical approach is to use
SAE (Ghosh and Rao 1994, Demombynes et al 2007,
Tarozzi and Deaton 2007). SAE typically uses some
form of linear or non-linear regression on survey data
to produce estimates for regions or populationswhere
survey outcomes are unobserved but predictor vari-
ables are observed.

Kriging, SAE, and related methods all depend on
applying a model based on observed outcomes to a
spatial (or spatial-temporal) space where those out-
comes are unobserved. The underlying challenge is
thatmodels can only be validated within the observed
spatial-temporal extent, and it is often unclear how
much outside of this observed extent the fitted model
will apply.

In Meyer and Pebesma (2021), the authors
address the challenge of reliably applying spatial pre-
diction models to areas beyond their training data.
They introduce the concept of an ‘area of applicab-
ility’ (AOA), defined as the region where a model’s
cross-validation error is representative. To delineate
the AOA, they propose a ‘dissimilarity index’ (DI),
calculated using the minimum distance to training
data in amultidimensional predictor space, with vari-
able weighting based on their importance in the
model. This DI helps determine the threshold for
the AOA.

The methodology involves standardizing pre-
dictor variables, weighting them according to their
importance, and then calculating the (weighted)
Euclidean distance between data points to compute
the DI. The authors tested various DI threshold val-
ues against nearly 1000 simulated prediction tasks,
ultimately selecting the 0.95 quantile of the DI values
from the training data as the threshold. This threshold
provides a binary indicator of whether a given region
falls inside or outside the AoAwhile the complement-
ary DI provides a continuous measure (with higher
scores being more dissimilar).

3. Data

3.1. Dependent variable
Themaize yield data come fromofficial reports issued
by the Ministries of Agriculture in Burkina Faso,
Kenya, andMalawi and by the FSNAU (Food Security
& Nutrition Analysis Unit) in Somalia. The data have
been collated by the FEWSNETData warehouse pro-
ject that has also performed additional validation
and quality control to ensure that the data can be
compared across administrative units for the entire
period. Table 1 shows the number of administrat-
ive units, range of years, and summary yield statistics
(across all years and administrative units) for each of

the countries, while figure 1 plots average yield for the
10 most recent years.

3.2. Predictor variables
Physical environmental factors in a grain yield fore-
casting system typically include measures of water
availability (precipitation), evaporative demand, crop
water-use, and/or photosynthetic activity. Our main
predictors are precipitation, evaporative demand,
NDVI, cropped area, soil moisture at 5 cm, and soil
organic carbon stock at 5 cm. For the EO variables,
we use products that measure or model these com-
ponents, have been used in other yield forecasting and
modeling activities, and have a minimum of 20 years
of monthly data. We also focus on EO products
that are routinely updated on a monthly or sub-
monthly basis and thus can be used in an operational
forecast setting. The specific predictors are listed in
table 2.However, we also use time-invariant products,
a crop mask, and estimates of soil water capacity and
organic carbon stock. These variables provide contex-
tual information in lieu of spatial dummy variables.

In this paper, we focus on predicting subnational
crop yields with 20 or more years of record. The
historical dataset is essential to capture infrequent
but severe drought events like those linked to El
Niño, which tend to occur at intervals of 5–10 years
(Timmermann et al 1999). We aim to encompass as
many of these less-frequent occurrences as possible in
both our training and testing datasets.

Figure 2 shows average seasonal patterns in the
time-varying variables, stratified by the ranking (low,
medium, and high) of yields for each administrat-
ive district within their respective countries. Thin
lines represent individual districts while thicker lines
are aggregate trends. Seasonal progression within
the agricultural cycle is delineated into four stages:
pre-planting (Pre), early-season (Early), mid-season
(Mid), late-season (Late), and post-harvest (Post).
We present this figure to highlight similar and diver-
gent seasonal patterns across countries and agricul-
tural regimes (high,medium, and low producers) and
because these patterns should be indicative of how
transferable a model is (or is not) across countries.
We would expect countries and regions with similar
seasonal curves for specific variables to have a high
potential for spatial transfer. We investigate this more
fully with our forecast experiments.

4. Methods

4.1. Model fitting and training
We fit random forest models that predict maize yields
in administrative units in four countries (figure 1).
Crop yields are observed once per season, but yield
forecasting is a concern throughout the season, and
updated EO observations are available on a monthly
(and sometimes sub-monthly) basis. Thus, we update
and re-fit models for each month of the season.
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Table 1. Number of administrative units with yield data, first/last year of data, along with mean, standard deviation, and
minimum/maximum of reported yields, and total number of observations by country. The final column (‘obs. cross-country’) refers to
the total number of observations from all of the other countries (excluding the one in that row). This is the number of observations used
(in the cross-country experiments) to train models that are then tested on that country. Yields are in metric tons per hectare.

Country # of admin units First year Last year Mean Std.dev Min Max Obs. (in-country) Obs. (cross-country)

Burkina Faso 45 1984 2019 1.15 0.51 0.034 2.769 1541 3274
Kenya 47 1982 2019 1.611 0.965 0.004 4.722 1569 3246
Malawi 28 1984 2017 1.398 0.633 0.005 3.378 869 3946
Somalia 38 1995 2021 0.51 0.289 0.02 1.648 836 3979

Figure 1. Average maize yields (in metric tons per hectare) for the most recent 10 years of data in each study area. Note that each
map is drawn at a different scale (as indicated by separate scale bars).

Prior research suggests that hyper-parameter tun-
ing does not have a substantial influence on the out-
of-spatial-sample predictive accuracy in random forest
models (Schratz et al 2019, Meyer and Pebesma 2021,
Milà et al 2022, Ludwig et al 2023). In these cases,
out-of-spatial-sample accuracy is more dependent on
a model trained using a spatial-cross validation (or
in our case, spatial-temporal) scheme that matches
the desired prediction conditions (Schratz et al 2019,
Meyer and Pebesma 2021, Milà et al 2022, Ludwig

et al 2023).We use a spatial-temporal cross-validation
scheme (described below) that follows the prediction
conditions for an operational yield forecast model.
However, to ensure the model generalizes well, avoids
over fitting, and is reproducible, we follow the para-
meter tuning guidelines described in Meyer and
Pebesma (2021). Specifically, we use 500 trees in each
forest, set mtry to be between 2 and the number of
predictors (7) and use a grid-search approach to find
the optimal parameters. We also follow the guidelines
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Table 2. Variables and data sources.

Variable Product Spatial resolution temporal extent Measure

Precipitation CHIRPS (Funk et al 2015)
(Climate Hazards Group
InfraRed Precipitation with
Station data)

0.05◦ (∼5 km) 1981–Present Cumulative total since
first month of growing
season

Evaporative demand Reference Evapotranspiration
(ET0) monitoring data set (uses
MERRA-2 atmospheric
reanalysis) (Hobbins et al 2016)

0.125◦ (∼12.5 km)
1981–Present

Cumulative total since
first month of growing
season

NDVI MAX AVHRR (Pinzon and Tucker
2014)

0.01◦ (∼1 km) 1981–2002- Mean of monthly
maximum values since
first month of the
growing season

eVMOD/eVIIRS(Huete et al
2002, Jenkerson et al 2010)

375 m 2002–Present4

Cropland mask IFPRI-IIASA cropland mask
(Fritz et al 2015)

0.01◦ (∼1 km) static data Proportion of cropland
area to total area of
polygon (Cropland
Percent)

Soil water capacity Global gridded soil
information—SoilGrids (Hengl
et al 2014)

0.01◦ (∼1 km), static data,
four depth strata including
D1 (0–5 cm), D2 (5–15 cm),
D3 (15–30 cm), and D4
(30–60 cm).

Soil water capacity at
5 cm

Soil organic carbon stock Global gridded soil
information—SoilGrids (Hengl
et al 2014)

0.01◦ (∼1 km) static data,
four depth strata including
D1 (0–5 cm), D2 (5–15 cm),
D3 (15–30 cm), and D4
(30–60 cm).

Soil organic carbon
stock (Soil OCS) at 5 cm

from the bootstrapping literature and sample with
replacement with the sample size set to the size of the
training sample (Chernick 2007, Cameron et al 2008,
Burridge and Fingleton 2010).

We use two different training and validation
approaches.

1. Training models on one country and testing
on others. In these experiments we fit a model on
one country and test the transferability to other
countries. We use spatial-temporal training folds,
leaving out years and blocks of administrative
units of the country we train on. We then test the
transferability of the models on all countries not
included in the training data.

2. Training models on all but one country and
testing on the holdout country. Again, we use
spatial-temporal training folds, but we hold out
an entire country and year during each iteration.

4 We blended two distinct normalized difference vegetation index
(NDVI) datasets to achieve a continuous time series analysis
spanning from 1981 to 2021. The NOAA AVHRR NDVI (1982–
2002) andUSGSEROS eVMOD/eVIIRS (2002–2021) datasetswere
integrated, applying bias correction to align means and stand-
ard deviations. The eVMOD NDVI dataset, specifically, represents
a refined version of the USGS EROS MODIS (eMODIS) NDVI,
which has been adjusted to align with the eVIIRS NDVI through
geometric mean regression.

We then test the transferability of the model on
the country not included in the training data.

By systematically holding out spatial and tem-
poral blocks, we ensure that the cross-validation pro-
cess accurately reflects the model’s performance in
out-of-sample spatial forecasts, approximating the
model’s transferability across different spatial scales
and environmental contexts. We evaluate the trans-
ferability ofmodels by predicting yields for allmonths
and years in the holdout countries. All accuracymeas-
ures we present below are for out-of-sample obser-
vations (excluded from the training data). We cal-
culate the mean absolute percent error to evaluate
model skill and examine how model skill correl-
ates with seasonal and environmental factors as well
as the dissimilarity index introduced by Meyer and
Pebesma (2021).

5. Results

5.1. Variable importance
Variable importance measures are shown in figure 3,
stratified by variable (panels), the country (or coun-
tries) the model was trained on, and the period in the
season when the model was run (x-axis). We include
these results to both highlight heterogeneity across
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Figure 2.Median Earth Observations (y-axis) during stages of the growing season (x-axis) and countries (columns). Thick lines
are country level trends and thin lines are individual districts. Colors indicate long-term average yield ranks relative to other
districts in the same country. Precipitation and evaporative demand are measured in millimeters while NDVI is an index scaled
between−1 and 1.

optimal model fits for each country and because sim-
ilarity in features and the importance of those features
are a critical component of the DI index developed by
Meyer et al (2019). If the index is an accurate meas-
ure of transferability, then countries with similar pat-
terns in the features (figure 2) and variable import-
ance measures should be indicative of spatially trans-
ferable models.

In general, we find that variable importance fluc-
tuates across different countries and time frames, sug-
gesting that the influences of environmental and agri-
cultural factors on model performance are different
in each region. Evaporative demand shows moderate
importance in the early season, with distinct peaks in
Kenya during themiddle of the season.NDVI displays
high relative importance for Malawi, while precipita-
tion was important throughout the season for Kenya
and in later stages for Burkina Faso and Somalia.
The time-invariant variables (percent crop land, soil
water capacity, and soil organic carbon stock) had the
highest relative importance because they vary neither

through time nor through the season and likely cap-
ture numerous geographic and spatial effects. Percent
crop area maintains a fairly consistent pattern across
the countries, with an observable increase in import-
ance in the late time frame for Somalia. We also
emphasize here that variable importancemeasures do
not necessarily reflect actual physical mechanisms at
play but simply provide diagnostics of how the model
is functioning and training the features available.

5.2. Distribution of MAPE scores across seasonal
stages and long-term average rainfall
Our first set of forecast experiment results focus on
forecast accuracy across different stages of the grow-
ing season. Figure 4 shows the distribution of mean
absolute percentage error (MAPE) scores for mod-
els trained on data from different countries, distin-
guished by the average seasonal rainfall of the area
tested. We stratify the data in this way because we
expect variation in seasonal forecast skill (and the
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Figure 3. Variable importance measures (y-axis) from models trained on sets of countries (colors) during different periods in the
season (x-axis). Note that the values for ‘All’ are averaged across all models where one country was held out.

transferability of models) across drier (arid to semi-
arid with<500mm annual precipitation) versus wet-
ter regions (500–750 mm and >750 mm). Generally,
we notice distinct patterns in accuracy across drier
(less accurate) or wetter (more accurate) regions, but
we do not see strong differentiation in patterns across
the growing season. There are some exceptions to
this. During the early phase, the model trained on
Kenya exhibits a peak within the 500–750 mm range
(green), indicating a clustering of lowerMAPE scores.
Conversely, the model trained on Malawi displays a
blue peak in the late phase, indicating higher fore-
cast accuracy for regions receivingmore than 750mm
of rainfall. The model trained on Somalia reveals
broad distributions across all phases and precipita-
tion ranges. Models trained on Burkina Faso data
tend to show the least variation inMAPE scores across
different seasonal stages. Overall, the distributions
convey that the predictability of the models varies not

only by training set but also aligns with the average
precipitation of the test region.

5.3. Relationship between forecast skill and average
annual precipitation
We now examine the relationship between forecast
skill and average total precipitation across varying
within-country ranks of average yields (low,medium,
high, relative to other regions in the same coun-
try). We stratify the data in this way because we
expect forecast skill (and the transferability of mod-
els) to vary across low and high yield areas, as
these areas might represent both different climate
and agricultural (rain fed or irrigated) regimes. We
also expect models trained on drier (arid to semi-
arid with <500 mm annual precipitation), lower
yield areas to perform better when tested on similar
regions and vice versa. In figure 5, we plot MAPE
scores (y-axis) versus average annual precipitation
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Figure 4. Distribution of mean absolute percentage error (MAPE) scores for models trained on data from different countries,
distinguished by the average annual rainfall of the area tested. The density distributions for MAPE scores are segmented into three
phases: early, mid, and late. Each panel represents one of the countries—Burkina Faso, Kenya, Malawi, Somalia—or an aggregate
of all (‘All’), with distributions colored based on three average precipitation ranges: red for less than 500 mm, green for
500–750 mm, and blue for more than 750 mm.

where a model was tested (x-axis). Data points are
color-coded to represent the countries the models
were trained on, including an aggregated dataset
(‘All’), Burkina Faso, Kenya, Malawi, and Somalia,
while shapes signify the country where a model is
tested.

When observing the low yield rank, there is an
evident increase in MAPE as the average total rainfall
rises, peaking around 800 mm, then sharply declin-
ing; however, the overall relationship is quite noisy.
The medium yield rank areas also display a dip in
MAPE around the 800 mm mark, indicating a pos-
itive relationship between forecast accuracy and wet-
ter regions at this transition point. Higher yielding
areas, in contrast, show a flatter error rate across vary-
ing precipitation levels, with only slight fluctuations.
Collectively, these results suggest that there is some
relationship between structural similarities in the
predictors (in this case precipitation) and predictive

accuracy- we further investigate this relationship in
figure 6.

5.4. Relationship between dissimilarity index and
forecast accuracy
Figure 6 further disaggregates the results shown in
figure 5 by showing separate panels based on the
training and test areas. We focus only on districts
where the MAPE score is ⩽45% and show the DI
scores (from Meyer and Pebesema 2021) for the test
areas. To preserve the legibility of the figure, we only
show plots that have the expected negative correla-
tion between MAPE scores and average precipitation
(supplemental figure S1 shows this relationship for all
areas). The regression lines shown in figure 6 indicate
a decrease in MAPE with an increase in average total
precipitation, which aligns with the hypothesis that
models are more accurate in conditions that resemble

8
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Figure 5. Relationship between forecast skill (y-axis, lower is better), average annual precipitation in an administrative unit
(x-axis), and within country yield ranks (panels). Data points are color-coded to represent the countries the models were trained
on, including an aggregated dataset (‘All’), Burkina Faso, Kenya, Malawi, and Somalia. Shapes represent the country where a
model is tested. Vertical dashed lines show thresholds for Arid-Semi-Arid regions (<500 mm) and for where rainfed maize
production is ideal (>750 mm).

their training environment, as indicated by lower DI
scores.

6. Discussion and conclusion

We examine the spatial transferability of EO-driven
yield forecast models within SSA. Given the expans-
ive reach of EO data contrasted with the more limited
scope of high-quality agricultural survey data, we test
whether a forecast model developed in one region can
be validly applied to another region with scarce or no
data.

Forecast accuracy, measured by MAPE scores,
aligns with the expected trend of higher accuracy
in regions with precipitation patterns similar to the
training data. These patterns are not uniform across
high, medium, and low yielding areas, pointing to
the nuanced nature of spatial transferability. In con-
trast to the yield ranks, we do not find widely varying
accuracy across the season, indicating that a model
trained and transferred on early season data will likely

be equally good or bad when used on later season
data.

In examining the relationship between forecast
skill and average total precipitation across yield ranks,
we note that although the relationship can be noisy,
certain trained/tested combinations (trained on All
and tested on Burkina Faso and Kenya; trained on
Burkina Faso and tested on Kenya, Malawi, and
Somalia; trained on Kenya and tested on Burkina
Faso; and trained on Malawi and tested on Burkina
Faso and Kenya) exhibit the hypothesized negative
correlation between MAPE and precipitation, partic-
ularly when models are applied to regions with sim-
ilar climates to those they were trained on. Time-
invariant variables like percent crop land, soil water
capacity, and soil organic carbon stock, which should
capture numerous geographic and spatial effects, also
likely play a crucial role in model transferability.

The results indicate that pooling models across
multiple countries can indeed provide more accurate
out-of-sample estimates compared to models fitted

9
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Figure 6. Disaggregation of the interplay among forecast skill, average total precipitation, yield rank, and the dissimilarity index
(DI), filtered to include only results where the mean absolute percentage error (MAPE) is less than or equal to 45%. The yield
ranks are the same as shown in figure 5 and are relative to other regions within the country where the model is tested.

to a single country or district. This improved accur-
acy is attributed to the broader range of environ-
mental and agricultural data that themodels can learn
from, allowing them to capture a wider array of con-
ditions that might be present in the test regions. The
pooled data sets provide a more robust and general-
ized model that can better accommodate the variab-
ility encountered in different geographical areas.
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