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Abstract
We examine relationships between the start of rainy season (SOS) and sub-national grain (white
maize) market price movements in five African countries. Our work is motivated by three factors:
(a) some regions are seeing increasing volatility SOS timing; (b) SOS represents the first observable
occurrence in the agricultural season and starts a chain reaction of decisions that influence
planting, labor allocation, and harvest—all of which can have direct impacts on local food prices
and availability; and (c) pre- and post-harvest price movements provide key insights into
supply-and-demand issues related to food insecurity. We start by exploring a number of different
SOS definitions using varying reference periods to define whether an SOS is ‘on-time’ or ‘late’. We
then compare how those different definitions perform in seasonal price forecasting models.
Specifically, we examine if SOS indicators can predict price means over 6 and 9 month periods, or
roughly the length of time from planting to market. We use different reference periods for defining
‘early’ versus ‘late’ seasonal starts based on the previous year’s start date, or median start dates over
the past 3, 5, and 10 year periods. We then compare the out-of-sample forecast performance of
univariate time-series models (autoregressive integrated moving average (ARIMA)) with
time-series (ARIMAX) models that include various SOS definitions as exogenous predictors. We
find that using some form of SOS indicator (either an SOS anomaly or 1st month’s rainfall
anomaly) leads to increased predictive power when examining prices over a 6 months window.
However, the results vary considerably by country. We find the strongest performance of SOS
indicators in central Ethiopia, southern Kenya, and southern Somalia. We find less evidence in
support of the use of SOS indicators for price forecasting in Malawi and Mozambique.

1. Introduction

Sub-Saharan Africa suffers from chronic food insec-
urity, and much of the region is experiencing
increasingly shorter and more volatile rainy seasons
(Wainwright et al 2019). Grain production and grain
prices in the region are heavily influenced by local
environmental conditions, especially rainfall (Lobell
and Field 2007, Brown and Kshirsagar 2015, Daven-
port and Funk 2015, Davenport et al 2018, 2019, Funk
et al 2018, Nobre et al 2018). At the same time, grain
price forecasting is a critical component of food-
security analysis and famine early warning (Rubas
et al 2006, Vogel and O’Brien 2006, Jayne and Rashid

2010, Naylor and Falcon 2010, Funk et al 2019). For
example, high wholesale grain prices prior to harvest
can signal lower-than-average production, and high
consumer grain prices can exacerbate food insecurity
(Barret and Mutambatsere 2005). Many poor house-
holds spend 60% or more of their income on food,
and higher food prices typically lead to reduced food
access.

A relatively new tool to food-security analysis and
famine early warning are analyses based around the
start of the rainy season (hereafter, SOS) (Shukla et al
2021). Analyses based on SOS offer an intriguing
advance to famine early warning, as SOS represents
the first observable agronomic indicator in the season
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and starts a chain reaction of decisions, such as when
to plant (Marteau et al 2011)1, in-season resource
allocation (Fink et al 2020), and when to harvest.
These decisions can have direct impacts on local food
availability. The SOS, both the amount of rainfall and
when it arrives (relative to prior years), provides a
key signal as to what the subsequent growing sea-
son and harvest will look like. In food-insecure areas
dependent on regionally grown rainfed crops, SOS
could potentially be a pivotal early indicator of food
availability for the following year.

However, relatively little work has been done on
the role that SOS indicators can play in forecast-
ing. One recent paper (Shukla et al 2021) demon-
strates the strong regional relationships between SOS
and peak NDVI anomalies (an indicator frequently
used as a proxy for grain production). Specifically,
they find a large and statistically significant relation-
ship in which late SOS is associated with decreased
peak NDVI, indicating a relationship between late
SOS and low plant productivity. This relationship is
strongest in chronically food-insecure regions of east
Africa. A recent conference presentation (currently
a manuscript in-preparation) shows strong relation-
ships between SOS and farmer planting decisions,
indicating that SOS measures can be used to approx-
imate planting dates when that data is unavailable
(Krell et al 2019).

In this paper, we explore whether incorporat-
ing information on SOS2 can improve seasonal price
forecast accuracy. We start by exploring a number
of different SOS definitions using varying reference
periods to define whether an SOS is ‘on-time’ or ‘late’.
We compare how those different definitions perform
in seasonal price forecasting models.

Specifically, we examine if SOS indicators can pre-
dict maize price means over 6 and 9 month periods,
or roughly the length of time from planting to mar-
ket. We use different reference periods for defining
‘early’ versus ‘late’ seasonal starts based on the pre-
vious year’s start date, or median start dates over 3, 5,
and 10 years before the current season. In this way, we
attempt to frame what the best reference time period
is for determining if onset of the rainy season is late
or not. We then compare the out-of-sample forecast
performance of univariate time-series (autoregress-
ive integratedmoving average (ARIMA))modelswith
time-series (ARIMAX) models that include various
SOS definitions as exogenous predictors (X).

We use these results to identify markets and
regions where SOSmeasurements can enhance maize
price forecasts. These markets present a typology that
analysts can use to identify markets that are respons-
ive to SOS conditions. While there is rich literature

1 We present a brief literature review of rainy season onset and
farmer planting decision in supplemental S2.
2 Defined by one 10 d period with 25 mm of rainfall followed by
two 10 d periods totaling 20 mm of rainfall. See section 2.1.

on the use of environmental variables to predict grain
prices in developing countries (Brown et al 2006,
2008, 2012, de Beurs and Brown 2013, Algieri 2014,
Brown and Kshirsagar 2015, Davenport and Funk
2015, Peri 2017), to our knowledge, this is the first
paper to explicitly use and test rainfall-based SOS
measures as a price predictor.

2. Background and data

Our study focuses on several countries in east-
ern (Kenya, Somalia, and Ethiopia) and southern
(Malawi and Mozambique) Africa. Figure 1 shows
a map of the study area—the markets we examine
and the approximate planting periods in the various
regions. We focused our analysis on those markets in
eastern and southern African countries with a min-
imum of 10 years’ worth of maize (which is one of
the major crops/food sources in this region) price
data. The planting periods shown in figure 1 are from
the GEOGLAM3 Crop Calendars4 and are approxim-
ations based on reviews of crop calendar data collec-
ted from international agencies, agricultural minis-
tries, and expert knowledge (GEOGLAM 2021).

2.1. SOS definition
In this study, we focus on two aspects of the SOS:
the timeliness (SOS anomaly) and the total amount
of rainfall in the 1st month (1st month rainfall).
This discussion focuses on the SOS metric; how-
ever, supplemental section S2 (available online at
stacks.iop.org/ERL/16/084050/mmedia) provides an
overview of seasonal rainfall history (wet and dry
years) in the countries of interest.

To define the SOS, we use a threshold amount
and distribution of rainfall received in three con-
secutive dekads5, as defined by the Centre Regional
de Formation et d’Application en Agrométéorologie
et Hydrologie Opérationnelle (AGRHYMET 1996).
The AGRHYMET SOS definition is frequently used
and evaluated in applied settings (Reason et al 2005,
Tadross et al 2005, Rojas 2007, Funk and Budde 2009,
Crespo et al 2011, Harrison et al 2011, Guan et al
2014, Ojo and Ilunga 2018, Shukla et al 2021) and is
used to define SOS in the Water Requirement Satis-
faction Index—a crop-weather analysis model com-
monly used by FEWS NET6 for monitoring ongo-
ing growing seasons (Verdin and Klaver 2002, Verdin
et al 2005). Recent comparisons with field surveys
also show this SOS metric to be an effective means

3 Group on Earth Observations Global Agricultural Monitoring
Initiative.
4 https://cropmonitor.org/index.php/eodatatools/baseline-data/.
5 Dekads are a common accumulation period within the agricul-
ture monitoring community. The 1st and 2nd dekad of a month
will contain 10 d, and the 3rd dekad will contain the rest of the
days of the month (8–11 d) (WMO 1992). There are 36 dekads in
a year.
6 Famine Early Warning Systems Network: https://fews.net/.
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Figure 1.Map of study area, markets, and approximate planting periods. Basemap reproduced from ESRI (2012).
Copyright (c) 2014 ESRI.

for estimating farmer planting dates (Krell et al
2019).

The SOSmetric is as follows: an SOS is established
when there are at least 25 mm of rainfall in a dekad,
followed by a total of at least 20 mm of precipitation
in the following two consecutive dekads. If these rain-
fall thresholds are satisfied, the SOS is defined as the
1st dekad in that 3 dekad series. The SOS growing sea-
son window, the period in which we begin monitor-
ing for rainfall to indicate a SOS, begins in February

for east Africa, and in September for southernAfrica7.
The monitoring of rainfall begins before the estim-
ated planting to capture early-season rainfall (SOS),

7 The monitoring period for these seasons ends in August for east
Africa and March for Southern Africa. These windows are partic-
ularly important in areas, such as east Africa, in which there is a
mixture of unimodal and bimodal rainy seasons (more than one
growing season), and/or one of those seasons cross the calendar
year.
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and because farmers generally wait until after the first
rains to begin planting. The SOS metric is calculated
on a grid cell basis, using the Climate Hazards Center
InfraRed Precipitation with Stations (CHIRPS8) pre-
cipitation data set (Funk et al 2015), to attain gridded
(0.1◦ latitude × 0.1◦ longitude) SOS for our years of
interest (1981–2018).

SOS timeliness (anomalies) are then calculated by
comparing a given year’s SOS grid to a defined refer-
ence period. The varying reference periods included:
the previous year and the median start dates over the
past 3, 5, and 10 year periods. This process, and its
application, are described in more detail in the fol-
lowing section 2.2. In addition to the timeliness of the
SOS, total rainfall in the 1st month (3 dekads) is also
used as a relative measure of the start to the rainy sea-
son in order to also explore the importance of early
rainfall amount versus timing.

We match SOS and 1st month’s rainfall to mar-
kets by taking the spatial averages of gridded surfaces
in 100 km buffers surrounding each market location
(shown in figure 1).We use 100 kmbecause we do not
know the exact centroids of the markets (the points
correspond to populated areas) and want to ensure
that they account for the entire region of surround-
ing buyers and sellers that might visit a given area9.

2.2. Using varying reference periods to define
anomalies
After calculating spatial averages for each year and
month, we convert each of our predictor variables
(SOS and 1st month’s precipitation) into climate
anomalies (value in a given month differenced from
a median calculated from prior years) prior to model
fitting. The use of anomalies as predictors is stand-
ard practice when working with environmental vari-
ables, especially in a climate context, as they place the
key variable in a context relative to spatial and sea-
sonal averages. In this paper, we explore if the refer-
ence period used to define an anomaly impactsmodel
performance. Specifically, we define anomalies over
a 1, 3, 5, and 10 year rolling median (rm) and com-
pare the predictive performance of these anomalies
across models. For example, if the performance of

8 Supplemental section S5 contains a detailed description of why
we use the CHIRPS dataset for this analysis.
9 Our analysis includes both wholesale (sellers) and retail (buyers)
and we want to account for as wide of activity space for both of
types ofmarket participants. Because our study areas include a vari-
ety of livelihood types, including agriculturalists, pastoralists, and
agropastoralists, we want to encompass the seasonal activity spaces
of all of these livelihood types. Of these livelihood types pastoralists
tend to have the widest activity space and also tend to be the most
food insecure and dependent on retail grain markets to meet their
caloric requirements. While it is difficult to precisely identify the
market-shed based on an individual centroid, the 100 km distance
has been used in other studies of pastoralist (Grace and Daven-
port 2021), and is based on a review of movement and activity pat-
terns of pastoral and agropastoral livelihood types in sub-Saharan
Africa (Turner and Hiernaux 2002, Adriansen and Nielsen 2005,
Adriansen 2008, Turner and Schlecht 2019).

an SOS indicator based on a 1 year anomaly notably
outperforms a model based on a 10 year anomaly,
this provides useful information for future predictive
models. Formally, the SOS anomalies are defined by:

S̃OS(y) = SOS(y) −median
(
SOS(y−1:y−N)

)
where SOS is the dekad of season start in y and N
refers to the 1, 3, 5, and 10 year reference periods.

As mentioned above, we also fit predictive mod-
els that use early season rainfall anomalies (instead
of SOS anomalies) using rainfall means defined over
the same 1, 3, 5, and 10 year periods. In the mod-
els that use rainfall anomalies, we only use the 1st
month in the season, (defined by the crop calendars
in shown in figure 1). We do this to compare two dif-
ferent but overlapping potential SOS indicators: when
the season starts and how much rain falls at the very
beginning of the season. Ultimately, this could serve
to assist analysts in defining the best reference period
and SOS metric for what makes a late versus an on-
time SOS.

2.3. Price data
We use monthly wholesale and retail nominal10 white
maize prices for 74 markets in Ethiopia, Kenya,
Somalia, Malawi, andMozambique11 (figure 1). Data
are collected, cleaned, and consolidated in the FEWS
NET Data Warehouse, though not all data sets are
publicly available at this time. All currencies were
converted toUSDper kilogramprior tomodel fitting.
We only examine markets with ten or more years of
continuousmonthly price data. Since SOS events only
happen once a season, we focus our analysis on sea-
sonal price levels—specifically, monthly prices aver-
aged over 6 and 9month periods following approxim-
ate planting months (figure 1). This follows the goal
of this paper in identifying how useful SOS indicators
are in predicting seasonal price levels.

Figure 2 plots monthly mean maize prices
(aggregated acrossmarkets) through the growing sea-
son. On the x-axis, ‘1’ indicates approximate plant-
ing periods. For example, based on this figure, the
planting period ‘1’ might be March or April for east-
ern African countries and November for southern
African countries. The colors indicate average prices
(through the season) for years with a late versus an
on-time season start. The figure suggests that late

10 We use nominal prices as it is difficult to impossible to find
regional deflaters that can accurately correct for the widely vary-
ing costs of living in African countries, especially for remote rural
environments. Operational forecasts in the region are generally
made on nominal prices for this reason. We do our best to accom-
modate inflation/deflation empirically by fitting on first differences
and including trend terms.
11 We chose these countries because they have historically exper-
ienced chronic food insecurity and drought, are among countries
where price forecasts are used to support famine early warning, and
have a number of markets with ten or more years of continuous
monthly price data.
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Figure 2.Mean white maize prices by crop calendar year during late and on-time years. The x-axis indicates the approximate
month of planting (see figure 1). The red line shows mean prices during crop calendar months, when the SOS is late (>2 dekads)
based on a rolling 10 years median. The blue line shows mean prices when SOS is early or on-time (⩽2 dekads).

seasons tend to have higher prices, and these persist
past the harvest periods. It should be noted that the
highest levels of food insecurity often occur during
the ‘lean period’, which falls within the rainy season,
but before the harvest, i.e. around month three or
four.

3. Methods

Our baseline time-series model is a univariate (no
exogenous predictors) ARIMA model,

y ′(t) = ϕ(1)y
′
(t−1) + · · ·+ϕ(p)y

′
(t−p) + θ(1)ε(t−1) + · · ·

+ θ(q)ε(t−q) + ε(t) (1)

where yt is the time-series of observed prices aver-
aged over either 6 or 9 months from planting, and
the subscript t indexes years. The indicates potential
differencing of the time-series, p is the order of lags,
ϕ are the autoregressive parameters, q is the order of
moving averages, θ are the moving average paramet-
ers, and ϵ are forecast errors from the prior periods.
ARIMA (p,d,q) models are standard and frequently
used methods for time-series analysis and forecasting
(Hyndman and Khandakar 2008, Hyndman and Ath-
anasopoulos 2018)12.

12 We use ARIMA models because they have a long and estab-
lished history in both time series analysis and forecasting (Tsay

We investigate if SOS can be used to enhance
forecast accuracy of seasonal grain prices. We com-
pare accuracy of forecasted price means over 6 and
9 month periods. We analyze forecasts made with
univariate ARIMAmodels (using just historical price
means), ARIMAX where the exogenous variable is
an SOS anomaly, and ARIMAX models where the
exogenous variable is the 1st month’s precipitation
anomaly.

Our basic workflow is as follows. For each set of
market time-series, we do the following:

(a) Fit univariate ARIMA (p,d,q) and ARIMAX
(with an SOS measure as a predictor) models
where the dependent variable is average price

2000, Box et al 2015). Along with exponential smoothing (ETS),
ARIMAmodels are themost popular andwidely employedmethod
for time series forecasting (Hyndman and Athanasopoulos 2018).
While the twomodel types, ARIMAandETS, broadly overlap, there
are special instances of each that are not found in the other. How-
ever, we choose ARIMA models for this paper because it is easier
to include external regressors (our main goal of this paper), the
format we use—wherein we fit an ARIMAmodel to the residuals of
a linear regression—can easily be compared across model fits and
is extremely computationally efficient (we fit about 805 models for
eachmethodwe evaluate). Finally we are able to fit all models using
the auto.arima() function in R, which is specifically designed for
this type of benchmarking (Hyndman and Khandakar 2008).
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either 6 or 9 months from planting. Each mar-
ket is initially fit on 5 years of data.

(b) Repeat this process for each market using an
expanding window cross-validation approach
and record the forecast error. For example, we
fit a model on 5 years of data and forecast
price averages in year 6. We then fit a model on
6 years of data, forecast year 7, and repeat. The
final column in table 1 shows the total num-
ber of forecasts—for each of the 9 methods we
evaluate—stratified by country andmarket type.

(c) The forecast errors for each series are averaged
together to calculate one mean absolute per-
cent error (MAPE) score for each market and
method.

(d) Finally, we compare forecast error across mar-
kets, forecast horizons (6 and 9 month means),
methods (with and without an SOS measure),
and lags (1, 3, 5, and 10 years rm) used to define
anomalies.

We evaluate forecast error using the MAPE. We
analyze the MAPE in several ways. To provide an
overview of performance, we use Nemenyi/MCB
(multiple comparison with best) tests (Koning et al
2005, Demšar 2006). These tests were pioneered to
perform a post-hoc analysis of the methods used in
the M313 forecasting competition. The basic process
is to rank the forecast performances of each method
on each time-series, and then estimate median ranks
of performance along with confidence intervals for
those ranks. Intuitively, this is similar to doing a
regression on the ranks of the MAPE scores using
dummy variables for each modeling approach and
then comparing the estimated coefficients for each
model.

However, we do not want to rest our analysis
solely on significance tests (Wasserstein and Lazar
2016, Amrhein et al 2019, Wasserstein et al 2019).
We are more interested in regional variation in the
value of SOS predictors and identifying areas where
SOS indicators add value to food-security analysis.
Therefore, we also present several descriptive meas-
ures to summarize model performance. We plot the
performance of each SOS-based model, relative to
the univariate model, across countries (and season
types) to identify any emerging patterns. Finally, we
map themarkets where SOS-based indicators consist-
ently outperform univariate models, regardless of the
indicator used.

13 The M-Competitions are a series (M1, M2, M3, M4, M5) of
forecasting competitions coordinated by Dr Spyros Makridakis
and the International Institute of Forecasters. The purpose of the
competitions is to evaluate both established and novel forecasting
methods with a series of benchmark datasets. More information
can be found here: https://forecasters.org/resources/time-series-
data/.

4. Results

4.1. Nemenyi tests comparing ranks of model
accuracy scores
We first present an overall summary of how the dif-
ferent models performed. Figure 3 shows estimated
MAPE ranks and 90% confidence intervals result-
ing from the Nemenyi tests (nine methods evaluated
across 74markets for a total of 666MAPE scores). For
the 6 months time period, we see that the univari-
atemodel, on average, performsworse than all others,
and adding SOS or 1st month’s precipitation anom-
aly as a predictor results in higher forecast skill. In
the 9 months period, the univariate ARIMA model is
2nd to last, outperforming the 5 years lag-based SOS
model. The models based on 1 and 10 year anom-
alies all perform best in either period. We suspect the
increased performance of SOS in the 6 months fore-
cast period is due to the fact that, as observations get
farther from the SOS, more information and events
outside of initial conditions could start influencing
prices, diminishing the importance of initial condi-
tions. In themiddle of the growing season, grain from
the previous season is being consumed, food availab-
ility is low, and prices tend to increase (figure 2). A
poor start to the seasonmay contribute to a perceived
increase in risk and food prices.

4.2. Results by country
Figure 4 shows results by country (aggregated across
market). The x-axis shows the difference in MAPE
scores between SOS/precipitation-based models and
the univariate ARIMA model. Points that fall to the
left of the vertical line indicate that a given model
outperformed the univariate model. Colors indicate
whether the prediction was made in a normal/early
year versus a late start year (for a given market area).

In general, we see themost support for SOS indic-
ators improving forecast performance in Ethiopia and
Kenya, with the strongest results for the 1 and 10 years
based anomalies and, as expected, stronger perform-
ance when the season start is defined as late. In
Somalia, these same results hold for the shorter peri-
ods (1, 3, or 5 years), but not for the 10 year period. In
contrast, results are more ambiguous for Malawi and
Mozambique, where the indicators often do not out-
perform the basic model even in late years. In general,
we do not see large performance differences between
the different types of SOS indicators (SOS anomaly
or the 1st month’s precipitation), although the SOS
anomaly-basedmodel has consistently shown the best
performance in Ethiopia during the 6months forecast
window.

4.3. Results by market
Finally, we present results at themarket level. Figure 5
shows markets where price models with SOS indic-
ators beat the univariate models by more than 5%

7
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Figure 3. Nemenyi tests of forecast accuracy based on nine methods where each method is evaluated on 74 markets. Median ranks
and 90% confidence intervals outputted from Nemenyi tests. Lower values on the x-axis (higher ranks) indicate better
performance. Different forecasting approaches are shown on y-axis, where rm indicates the period of rolling median used to
define the lag. The univariate ARIMA models have the highest (worst) MAPE scores for the 6 months forecast horizon but do
slightly better in the 9 months horizon.

(regardless of lag type or indicator used). The pur-
pose here is to identify markets where some form of
SOS indicator can improve early season price forecast
performance. Shapes indicate market type (wholesale
versus retail), and darker colors indicate the strength
of the SOS-based ARIMA model against the univari-
ate model. Grey points are markets where SOS indic-
ators do not increase forecast performance. In gen-
eral, we see that SOS indicators primarily improve
forecast performance in central Ethiopia, southern
Kenya, and southern Somalia. With some exceptions,
the spatial distribution of the successful SOS mod-
els aligns with drier, more drought-prone eastern
areas (see supplemental figure S2). These regions have
shorter seasons and less opportunity to recover from a
delayed onset. There are only a fewmarkets inMalawi
and Mozambique, where SOS indicators routinely
increase forecast performance.

5. Discussion and conclusion

We find that using some formof SOS indicator (either
an SOS anomaly or 1st month’s rainfall anomaly)
leads to increased predictive power when examining
prices over a 6 months window. However, the results
vary considerably by country. We find the strongest
performance of SOS indicators in central Ethiopia,
southern Kenya, and southern Somalia. We find less
evidence for the use of SOS indicators for price fore-
casting in Malawi and Mozambique. These findings
support other research suggesting that, within sub-
Saharan Africa, the relationship with SOS and food-
security measures is strongest in east African coun-
tries (Shukla et al 2021).

The evidence demonstrating that using a spe-
cific reference period (1, 3, 5, or 10 years) to define
a season anomaly will increase performance is less

8
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Figure 4. Difference in MAPE scores for each market, forecast period, and lag definition. The x-axis shows the difference between
forecast accuracy of a model that uses some measure of SOS anomaly and a univariate model. Values below (to the left of) the
vertical line indicate where an SOS-based measure provides more accurate forecasts than a univariate ARIMA model. This plot
shows the difference in out-of-sample MAPE scores for each market, averaged across all markets with separate colors for late
versus normal/early years and separate symbols for the type of predictor used. The columns are for each country and the rows are
for each rm period used to define the seasonal anomaly. Each point is vertically offset in order to avoid plotting points on top of
each other.

conclusive. While the MCB tests suggest that all
anomaly definitions tend to outperform univariate
models, there is not an obvious pattern, as both
the 1 and 10 years based anomalies were ranked as
the overall best indicators, and there was substan-
tial heterogeneity of these results across regions. One
explanation for the performance of the 1 and 10 year
anomalies is that a late start or low rainfall based on a
10 years anomaly may signify a substantial drought,
while the 1 year anomaly simply reflects a cognit-
ive bias towards the most recent events (short-term
memory).

The relative insensitivity of the reference period
may be also related to the year-to-year stationarity of
the African monsoon systems. These systems move
south and north in response to latitudinal variations
in insolation and shifts in the IndianOcean’s complex

annual wind patterns (Funk et al 2016). Given this
strong climatological cycle, the baseline 1, 3, 5, and
10 year values used to calculate the anomalies could
be quite similar.

This same feature—the strong phase locking of
the seasonal cycle, can also help to explain the value of
SOS indicators. In drier areas of central-eastern East
Africa, the end of the rainy season is quite fixed, so a
slow onset is an effective harbinger of higher prices.
In Malawi and central-northern Mozambique, cessa-
tion of the monsoon season is less distinct, and this
may help account for the weaker SOS relationships.

We also suspect that the use of historical refer-
ences to define what is a ‘normal’ season likely var-
ies significantly across market-sheds, buyers, sellers,
and even farmers; this heterogeneity creates a more
muddled picture when aggregated across countries

9
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Figure 5.Map showing markets where the average MAPE score, regardless of model type, is 5% or lower than the univariate
ARIMA model. Lower scores indicate better performance. The figure shows markets where SOS indicators consistently produce
better forecasts. Markets where this is not the case are shown in grey.

and years. For example, the 10 year indicators did
not perform as well in Somalia, which may reflect
the long period of civil conflict in that country (e.g.
other factors, such as conflict, pests, and disease can
inhibit the influence of long-term seasonal anomalies
on market prices). It is possible that this heterogen-
eity in response to seasonal trends, along with uneven
patterns of spatial price transmission in the region
(Brown et al 2012, Ansah et al 2014), also explains
why the results are less spatially clustered than we
would expect14. A final source of uncertainty is the
lack of explicit knowledge of planting dates. While
we have preliminary evidence that planting dates gen-
erally coincide with SOS (Krell et al 2019), and we
have general knowledge of regional crop calendars
(GEOGLAM 2021), we also know that the timing of

14 In general, prior research has shown that sub-national markets
in eastern and southern Africa are primarily influenced by a mix
of local and regional influences. However they are not immune to
very large exogenous shocks and prices in the bigger urban areas
and major ports can be follow leads from the global cereals price
indices (Brown et al 2012, Brown and Kshirsagar 2015).

planting is driven by a host of factors and that these
may vary by year across regions. This is one of the
reasons why we focus on aggregate price means and
limit our results to markets with at least 10 years’
worth of price data—so that our conclusions focus
on price levels across seasons and regions rather than
a specific market, month, or year. We anticipate that
the heterogeneity of individual farmer’s or market’s
responses to SOS could be better teased out with
future survey data or field experiments. However, we
are confident in asserting that, when making fore-
casts, the specific reference value is less important
than simply including some measure of early season
anomaly, particularly in east African countries.

This has important potential applications in
terms of price forecasting and intervention planning.
Our results imply that late onset of the rainy sea-
son can impact market behavior quickly, months
before harvest (figure 2). If price variations are driven
by expectations, rather than actual physical grain
deficits, then that can help explain the rapid, and
potentially deadly, jump in prices seen in Kenya,
Somalia, and Ethiopia during the drought years 2011

10
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and 2017 (Funk et al 2018)15. These price spikes
occurred in the middle of the growing season, long
before harvest. These rapid and dangerous price
shocks require rapid and effective responses, which
can be supported by staged early warning systems
(Funk et al 2018).

In regards to future research opportunities, there
are several intriguing avenues. The first might be to
investigate explicit monthly price movements, not
seasonal averages, as we do here. Our goal in this
paper is to provide a general sense of the usefulness
of SOS indicators; however, as the results suggest,
there is considerable heterogeneity in market price
behavior, and thus, a more finely detailed explor-
ation at the monthly and individual market level
might provide more insight as to why certain mar-
kets do or do not respond to seasonal start signals.
A finer-grained analysis might also explore altern-
ate crops, a wider range of forecast windows, and
a more detailed examination of wholesale and retail
level prices. We are also interested in exploring SOS
definitions with finer temporal resolution (perhaps at
the daily level) to examine the extent that this might
influence very near-term price movements and volat-
ility. Finally, there is an emerging set of Earth observa-
tion products that can be used to forecast SOS which,
if quantitatively linked to food-security outcomes,
could also be promising for developing extended sea-
sonal outlooks.
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