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Abstract. Disaster planning has historically allocated mini-
mal effort and finances toward advanced preparedness; how-
ever, evidence supports reduced vulnerability to flood events,
saving lives and money, through appropriate early actions.
Among other requirements, effective early action systems ne-
cessitate the availability of high-quality forecasts to inform
decision making. In this study, we evaluate the ability of sta-
tistical and physically based season-ahead prediction mod-
els to appropriately trigger flood early preparedness actions
based on a 75 % or greater probability of surpassing the 80th
percentile of historical seasonal streamflow for the flood-
prone Marafién River and Piura River in Peru. The statisti-
cal prediction model, developed in this work, leverages the
asymmetric relationship between seasonal streamflow and
the ENSO phenomenon. Additionally, a multi-model (least-
squares combination) is also evaluated against current opera-
tional practices. The statistical prediction demonstrates supe-
rior performance compared to the physically based model for
the Marafién River by correctly triggering preparedness ac-
tions in three out of four historical occasions, while both the
statistical and multi-model predictions capture all four his-
torical events when the required threshold exceedance prob-
ability is reduced to 50 %, with only one false alarm. For the
Piura River, the statistical model proves superior to all other
approaches, correctly triggering 28 % more often in the hind-
cast period. Continued efforts should focus on applying this
season-ahead prediction framework to additional flood-prone
locations where early actions may be warranted and current
forecast capacity is limited.

1 Introduction and motivation

Globally, flood catastrophes lead all natural hazards in terms
of mortality and cause billions of dollars in damages an-
nually (Doocy et al., 2013; IFRC, 2020; Lee et al., 2018;
Munich RE, 2012, 2018). Government agencies and relief
organizations have historically prioritized disaster relief, al-
locating the majority of financial resources to response ef-
forts in a reactionary mode, in lieu of pre-disaster prepared-
ness (Coughlan de Perez et al., 2016). However, forecast-
based early action (FbA) initiatives are now recognized as
a critical component of disaster risk reduction (IFRC, 2009).
While no strict definition for FbA exists, the term generally
refers to initiatives that provide assistance and allocation of
resources for preparation in advance of disasters based on
hydro-climate forecasts (Wilkinson et al., 2018). Empirical
evidence demonstrates that actions taken in advance of a dis-
aster can reduce loss of life and result in cost savings for re-
lief organizations (Aguirre et al., 2019; Braman et al., 2013;
Golnaraghi, 2012; Gros et al., 2019).

Forecast performance, uncertainty, and hazard type con-
tribute to the range and extent of potential early actions avail-
able. In 2013, a near-certain forecast prompted the evacu-
ation of approximately 400000 people in advance of Cy-
clone Phailin in India given a lead time of just 4d (Harri-
man, 2014). While longer lead times allow for a greater range
of potential early actions (Bazo et al., 2019), this must be
balanced against corresponding increases in forecast uncer-
tainty. To address this tradeoff, disaster managers seek low-
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regret actions, potentially in combination with a mechanism
to halt early actions if the threat of a disaster sufficiently
drops, and thus avoid unnecessary costs (Wilkinson et al.,
2018). While FbA was initially applied to acute and slowly
evolving threats like tropical cyclones, more recent efforts
have targeted hydrological threats including extreme rainfall
and flooding (e.g., Gros et al., 2019). For example, in West
Africa in 2008, preparatory actions, including preposition-
ing relief supplies and volunteer training, initiated based on
a season-ahead forecast of above-average rainfall and high
likelihood of floods, resulted in fewer deaths and lower re-
sponse costs compared to previous flood events when no
early action was taken (Braman et al., 2013).

The question of when to initiate FbA requires integrating a
hazard forecast with vulnerability and exposure information
to estimate the impact of an extreme event. One commonly
used method to trigger early action is to define a forecast
threshold above which impacts are likely to occur based on
historical data (Wilkinson et al., 2018). In the context of heat
waves in London, actions to reduce vulnerability for high-
risk groups, such as ensuring indoor temperatures are below
26 °C, are triggered when a forecast indicates temperatures
of at least 32 °C during the day and at least 18 °C at night
(Public Health London, 2018). This method accounts for the
probabilistic nature of forecasts by requiring a predetermined
level of forecast confidence; in London, a 60 % probability of
reaching the temperature thresholds is required.

When linking early action based on probabilistic forecasts
to the occurrence of extreme events, four scenarios are pos-
sible (Table 1) where worthy action and worthy inaction are
preferred. The risk of acting in vain, when early action is
initiated but an extreme event fails to materialize (Lopez et
al., 2017), is often viewed as a major barrier to scaling up
FbA (Tanner et al., 2019). However, studies have found that,
when compared to a late response, early action is almost in-
variably cheaper: a late response can be 2 to 6 times more
costly than actions in vain (Cabot Venton et al., 2012). Addi-
tionally, financially based actions such as unconditional cash
disbursements targeting vulnerable households can yield a
benefit regardless of whether or not the event occurs (Wilkin-
son et al., 2018). Forecast models that proficiently predict ex-
treme events at lead times permitting early action are critical
for minimizing false positives and false negatives. In addi-
tion to short-term weather forecasts, which are commonly
viewed as skillful, medium- to long-range climate forecasts
have also been demonstrated to improve preparedness proto-
cols, resulting in reduced mortality, morbidity, and resource
demands (Braman et al., 2013). However, their applications
have been limited predominantly as a result of moderate fore-
cast performance and significant uncertainty.

Improvement in the skill of hydrologic models over the
last several decades has aided the development of FbA sys-
tems for flooding. Among hydrologic models, those that are
physically based (or dynamical) simulate physical processes
such as infiltration and runoff to produce streamflow predic-
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Table 1. Contingency table demonstrating potential outcomes of
forecast-based action.

Extreme event No extreme event

Action in vain
Worthy inaction

Early action
No early action

Worthy action
Failure to act

Note: adapted from Lopez et al. (2017), Table 1.

tions and are often forced with climate predictions down-
scaled from general circulation models (GCMs) or numeri-
cal weather models. Statistical (also called empirical or data-
driven) models forgo the parameterization of complex phys-
ical processes in favor of understanding the lagged relation-
ships between precipitation or streamflow and antecedent
land, atmosphere, and ocean conditions. Statistical and phys-
ical models have been successfully applied to seasonal pre-
diction of hydrologic variables including precipitation and
streamflow (e.g., Badr et al., 2013; Block and Rajagopalan,
2009). Both frameworks have their own set of advantages
and disadvantages with prediction skill varying according to
season and location (Infanti and Kirtman, 2014). While sta-
tistical models are not intended to provide a complete un-
derstanding of the hydro-climate system, they offer an ap-
pealing complement to physically based models by focusing
solely on the prediction variable of interest (Zimmerman et
al., 2016).

A common traditional approach for statistical hydrologic
modeling is multiple linear regression (MLR), which relates
a predictand to the linear combination of several predic-
tor variables (Moradkhani and Meier, 2010). For categorical
streamflow forecasts, logistic regression (for two categories)
or polytomous logistic regression (for three or more cate-
gories) has been used successfully (e.g., Wei and Watkins,
2011). Because these methods are prone to multicollinearity
due to the overlapping signals present in many hydroclimate
variables, techniques such as principal component regression
(PCR; a combination of principal component analysis and
MLR) and partial least-squares regression (e.g., Lala et al.,
2020) are employed to address this challenge. More recently,
machine learning techniques, adept at capturing nonlinear re-
lationships between predictors and a predictand, have been
successfully applied to hydroclimate forecasting, including
artificial neural networks (Zealand et al., 1999), random for-
est classification (Ali et al., 2020; Lala et al., 2020), and
support-vector machines (Asefa et al., 2006; Shabri and
Suhartono, 2012). There is also increasing recognition that
hybrid approaches combining statistical and dynamical tech-
niques can offer greater accuracy than even state-of-the-art
dynamical models (Cohen et al., 2019).

Multi-model techniques have been developed based on
the assumption that individual model errors are uncorrelated,
in which case a multi-model average could provide greater
skill than any individual model. Options for combining mod-
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els include equal weighting, linear regression, or Bayesian
methods (e.g., Gneiting and Raftery, 2005). In some cases,
multi-model ensembles have been shown to significantly
increase forecast skill over the best-performing individual
model (e.g., Regonda et al., 2006) while not in other cases.
For example, Bohn et al. (2010) note only modest improve-
ment when using a least-squares weighted multi-model.

This study evaluates multiple season-ahead forecast ap-
proaches, namely locally tailored statistical and existing
global-scale physical models, to individually and collectively
inform advanced flood preparedness actions, using Peru as
a case study. Typically, only physically based forecast ap-
proaches are used operationally; however, augmenting with
a locally tailored statistical forecast may considerably im-
prove forecast performance and opportunities for prepared-
ness. In this paper, we use the term “season-ahead predic-
tion” to describe forecasting the mean streamflow for an up-
coming 3-month season issued at the start of that season. Ide-
ally, a season-ahead prediction of January—February—March
streamflow would be issued on 31 December and represents
a prediction of the average streamflow over the upcoming
3 months. In practice, due to lags in data availability and
for purposes of direct comparison with a physically based
model, forecasts developed in this study are issued on the
10th day into the 3-month season.

2 Case study in Peru
2.1 Flood impacts in Peru

Peru experiences catastrophic flooding with relative fre-
quency, resulting in significant adverse economic and health
impacts. In northwest Peru, flooding caused by extreme rain-
fall during El Nifio events in 1982-1983, 1997-1998, and
the 2017 coastal El Nifio each incurred damages exceeding
USD 5 billion (in 2020 dollars) and collectively resulted in
over 1000 deaths (French and Mechler, 2017; Venkateswaran
et al., 2017). Flooding in the Peruvian Amazon basin af-
fected over 300 000 people in 2012 (IFRC, 2012) and over
100 000 people in 2015 (IFRC, 2015). Floods prevent access
to safe drinking water, disrupt livelihoods centered around
farming and fishing, and can force residents to relocate from
low-lying areas (IFRC, 2019). Health impacts of extreme
flooding include increased incidence of acute diarrheal dis-
ease, arboviral diseases, malaria, and water-borne diseases
(Caviedes, 1984; IFRC, 2019).

2.2 Hydroclimatology of Peru

While floods are common throughout many regions of Peru,
climate and hydrology vary dramatically. The hydroclimatol-
ogy of Peru is broadly characterized by a disruption of tro-
pospheric flow caused by the Andes cordillera, which main-
tains an arid climate along the Pacific coast and wet condi-
tions in the Amazon basin to the east (Garreaud et al., 2009).
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Particularly along coastal Peru, a major source of interan-
nual variability in precipitation and temperature is controlled
by the El Nifilo—Southern Oscillation (ENSO) phenomenon,
a system of ocean—atmosphere feedbacks in the tropical Pa-
cific (Garreaud et al., 2009). In the southern coastal region,
the warm, positive phase of ENSO (EI Nifio) is associated
with below-average precipitation (Wu et al., 2018). In north-
west Peru, strong El Nifio years are often associated with
above-average precipitation, most notably during the 1982—
1983 and 1997-1998 El Nifo events which coincided with
extreme rainfall and flooding (Bayer et al., 2014). However,
the impacts of similarly intense El Nifio events are variable.
Despite very strong El Nifio conditions in 2015-2016, rain-
fall and flood impacts in Peru were minimal (French and
Mechler, 2017; Ramirez and Briones, 2017; Venkateswaran
et al., 2017). El Nifio events can span the equatorial Pacific
region (e.g., 1982-1983, 1997-1998) or they can be con-
fined to the coast of northern Peru and Ecuador (Ramirez
and Briones, 2017). The latter type is known as a “coastal
El Nifio” or “El Nifio costero” and has occurred in 1925 and
2017, in both cases resulting in extreme rainfall and flooding
(Ramirez and Briones, 2017; Takahashi and Martinez, 2017).
While El Nifio conditions are associated with extreme events
along the coast, La Nifia (cool, negative phase of ENSO) con-
ditions can also produce slightly higher than average stream-
flow (Fig. 2b).

In the Amazon basin, the influence of climate variables
on flood risk remains understudied (Towner et al., 2020) as
a result of the nonlinear relationship between precipitation
and streamflow (Stephens et al., 2015). Hydrometeorologi-
cal regimes in the Amazon basin are diverse and are driven
by seasonal warming of the Northern Hemisphere and South-
ern Hemisphere and the migration of the Intertropical Con-
vergence Zone (Espinoza Villar et al., 2009). Precipitation
in the Peruvian austral summer (DJFM) is dominated by the
South American Monsoon season which enhances the north
Atlantic trade wind (Zhou and Lau, 1998) as well as by deep
convection that recycles moisture over Amazonia (Garreaud
et al., 2009). El Nifio conditions and above-average sea sur-
face temperatures (SSTs) in the tropical north Atlantic, south
Atlantic, and Indian oceans are associated with decreased
rainfall in the northern portion of the basin and increased
rainfall in the south (Marengo, 2004). La Nifia conditions are
weakly associated with increased precipitation in the western
Amazon basin (Garreaud et al., 2009).

2.3 Flood early action protocol

In October 2019, the International Federation of Red Cross
and Red Crescent Societies (IFRC) approved an Early Ac-
tion Protocol (EAP) submitted by the Peruvian Red Cross
for flooding in the Peruvian Amazon. The plan is based in
part on an extension of the Global Flood Awareness System
(GIoFAS) called GIoFAS seasonal, a global streamflow fore-
cast model developed by the European Centre for Medium-
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Range Weather Forecasts (ECMWF) that couples seasonal
climate forecasts from GCMs to a physically based hydrol-
ogy model (Emerton et al., 2018). Early actions, which in-
volve the prepositioning of supplies and release of funds,
are triggered when 75 % of GloFAS ensemble members fore-
cast streamflow above the 80th percentile (IFRC, 2019) at a
45 d lead time. Because GloFAS exhibits only modest fore-
cast skill in Peru when detecting floods at short lead times
(Bischiniotis et al., 2019), there is an opportunity to lever-
age complementary prediction frameworks to improve fore-
cast performance. Similarly, an EAP is in development for
the Piura basin in coastal northwest Peru to address extreme
precipitation and flooding.

2.4 Case study locations

Study locations prone to riverine flooding were identified
by collaborators at the Red Cross Climate Center in Lima,
Peru, and the EAPs, namely the Marafién River at San
Regis and the Piura River at Puente Sdnchez Cerro (Fig. 1).
The Marafién is a tributary to the Amazon River, east of
the Andes, with a basin covering approximately one-half
(362 000km?) of the Peruvian Amazon River basin. Here,
tropical lowland forest (below 600 m elevation) is the dom-
inant ecozone followed by tropical montane forest (above
600 m elevation) (Kvist and Nebel, 2001). The Piura River
basin above Puente Sidnchez Cerro is significantly smaller
in size (7435 kmz), consists of coastal desert and dry forest,
and is generally classified as arid with precipitation averag-
ing less than 50mmyr~! for elevations below 500m (Ro-
driguez et al., 2005). Throughout this paper, the names of the
monitoring stations will be used to describe the stations and
the basins they delimit.

2.5 Streamflow variability

Daily streamflow data for each location (1999-2017 at San
Regis, 1971-2017 at Puente Sanchez Cerro) was provided
by the Peruvian Meteorological Agency, El Servicio Na-
cional de Meteorologia e Hidrologia del Perd (SENAMHI),
who performed appropriate quality assurance. Monthly mean
streamflow at Marafién exhibits a sinusoidal autocorrelation
structure, with statistically significant autocorrelation at 1-
and 2-month lags as well as at interannual timescales. In con-
trast, streamflow at Piura exhibits significant autocorrelation
at up to a 3-month lag yet minimal autocorrelation at inter-
annual timescales, indicating a greater degree of variability
in successive years. This is predominantly an effect of catch-
ment size and watershed memory, and it is an important fea-
ture for streamflow prediction.

The high-flow season during which floods are likely to
occur is computed using an approach modified from Lee et
al. (2015) and is defined as the three consecutive months with
the largest combined number of days with streamflow val-
ues in the top 1% of all days in the historical record. For
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Figure 1. Case study locations with catchment boundaries delimited
in red. Shading represents idealized land cover. Made with Natural
Earth (https://www.naturalearthdata.com/, last access: 26 January
2020).

Marafién, the high-flow season is March, April, and May
(MAM); for Piura, it is February, March, and April (FMA).
Testing this approach with a slightly lower threshold to de-
fine high-flow days (3 % and 5 %) returns the same high-flow
season, further validating the seasons selected. The high-flow
season for Marafi6n identified via this methodology is similar
to the IFRC’s characterization of flood season in the Amazon
basin as running from December to April (IFRC, 2019). At
Maraiién, all daily observations in the top 1 % occurred in
MAM and the annual maximum occurred in MAM in 17 out
of 19 years; at Piura, 87 % of daily observations in the top
1 % occurred in FMA, while the annual maximum discharge
occurred in FMA in 40 out of 47 years. Clearly, high-flow
conditions occur outside these seasons; however, in this study
these will not be captured as the focus is on the likelihood of
high-flow conditions within the target season only.

3 Statistical approach to season-ahead streamflow
prediction

3.1 Potential local-scale predictor variables

Ocean-land—atmospheric variables representative of slowly
evolving hydro-climatic conditions offer prospects for pre-
dicting streamflow from a season-ahead lead. This in-
cludes considering preseason large-scale ocean—atmosphere
teleconnections and basin-scale hydrologic processes (Ta-
ble 2). Predictions of seasonal (3-month) average streamflow
(m3s~1) are issued on the 10th day into the 3-month high-
flow season identified in Sect. 2, leveraging predictors based
on values in the preceding months. Practically, issuing the
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forecast 10d into the forecast season allows time for large-
scale climate data to be made available online, while also fos-
tering a more direct comparison with GloFAS as described in
Sect. 3.4.

Precipitation data used in this study leverage the Peru-
vian Interpolation data of SENAMHI’s Climatological and
hydrological Observations (PISCO) v2.1 dataset (Aybar et
al., 2020), provided by SENAMHI and accessed via the In-
ternational Research Institute for Climate and Society (IRI;
http://iridl.ldeo.columbia.edu, last access: 18 March 2021).
PISCO contains monthly and daily precipitation at a 0.1°
grid resolution from 1981 to 2017 and is based on the Cli-
mate Hazards group InfraRed Precipitation with Stations
(CHIRPS; Funk et al., 2015) quasi-global precipitation prod-
uct calibrated with SENAMHI station data. Basin-averaged
January and February precipitation correlate significantly
with streamflow, though less so compared to the January—
February average; to maintain model parsimony we included
only the latter as a potential predictor for the Marafién at San
Regis (Table 2). The Piura catchment is approximately 2 %
the size of the Marafién, and only basin-averaged precipita-
tion in January significantly correlates with streamflow (Ta-
ble 2).

Soil moisture data (0.5°, monthly) are provided by the
National Oceanic and Atmospheric Administration (NOAA)
Climate Prediction Center (Fan and van den Dool, 2004). At-
mospheric moisture transport can occur over long distances
and across catchment boundaries; to capture potential sig-
nals of soil moisture on streamflow variability, a principal
component analysis is conducted on 1-month-ahead gridded
soil moisture across northern South America, and the first
principal component (PC) is retained as a potential predictor.
Basin-averaged mean air temperature in the month prior to
the forecast, provided by NOAA (https://psl.noaa.gov/, last
access: 15 June 2020), is also considered (Table 2).

Given that the Piura basin is relatively small and within-
season precipitation is an important contributor to seasonal
streamflow, FMA precipitation (mm d~!) predictions derived
from the mean of two GCM members (NASA GEOS-S2S
and NCEP CFSv2) of the North American Multi-Model En-
semble (NMME) (Kirtman et al., 2014) are also evaluated.
The two models have exhibited superior performance in
terms of RMSE, temporal correlation, and Heidke skill score
in northwest Peru compared to other NMME models when
simulating January, February, and March precipitation across
lead times of 1 to 6 months (Wang et al., 2021). Individually,
each model’s FMA precipitation prediction correlates with
streamflow at 0.76; when averaged, correlation increases to
0.84 (Table 2).

3.2 Potential large-scale predictor variables
A common approach for identifying SST regions for use as

predictors is to search for stable correlations between the
predictand (streamflow in this case) and SSTs over a mov-
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ing window of historical data (Gdmiz-Fortis et al., 2010;
Tonita et al., 2015). However, the state of ENSO can influence
the mean state of the atmospheric—oceanic system, which
in turn affects the relevant teleconnections between SSTs
and precipitation or streamflow (Zimmerman et al., 2016).
This asymmetric relationship between ENSO and stream-
flow may prove challenging from a traditional modeling per-
spective. At our study sites, the distributions of seasonal
streamflow shift and change shape according to the state of
ENSO, though significant variability within each phase exists
(Fig. 2). A Nifio Index Phase Analysis (NIPA; Giuliani et al.,
2019; Zimmerman et al., 2016) approach is advantageous in
such cases, capturing the variance and signals within each
phase separately and thus addressing the overall asymmetric
challenges.

NIPA is adopted to select global SST and sea level pres-
sure (SLP) regions exhibiting strong teleconnections with
streamflow at our study sites. The selection of these regions
is conditioned on the preseason state of ENSO (NDJ for
Piura and DJF for Maraiién) as represented by the average
Multivariate ENSO Index (MEI) value (Wolter and Timlin,
2011). Historical years are categorized according to the pre-
season average value of MEIL. While including more bins
may potentially provide additional unique streamflow infor-
mation by further distinguishing climate system states, this
needs to be balanced against available observational data. For
Piura, the three categories are generally representative of El
Nifio, La Nifia, or neutral conditions, per NOAA’s definition
(NOAA, 2020). The short historical dataset at Marafién at
San Regis limits categorizing into two phases delineated as
positive and negative MEI values. (While a two-phase model
for Piura was also tested, the three-phase model improves
performance, including in years critical for disaster prepared-
ness.) For years classified within each phase, observed target
season streamflow is correlated with global preseason SSTs
from the NOAA.

The Extended Reconstructed Sea Surface Temperature
V3b dataset (Smith et al., 2008), a global gridded dataset of
monthly mean SSTs at a 2° resolution from 1854 to present,
was accessed via IRI. Of the SST regions statistically signif-
icantly correlated with streamflow (Fig. 3), the first and sec-
ond PC is extracted as a potential predictor in the statistical
model. For Piura (Marafién) the first and second PCs explain
83 % and 7 % (84 % and 6 %) of the variance respectively,
and only the first PC significantly correlates with streamflow.

Given that SLP evolves more quickly than SSTs, only the
single-month values prior to the target season are evaluated;
otherwise the process mirrors SST selection. SLP data are
from the NCEP/NCAR Climate Data Assimilation System I
(Kalnay et al., 1996) and accessed via IRI.

3.3 Statistical prediction model

The statistical forecast is composed of sub-models built only
on data from years in a particular climate state, as repre-

Nat. Hazards Earth Syst. Sci., 21, 2215-2231, 2021


http://iridl.ldeo.columbia.edu
https://psl.noaa.gov/

2220

C. Keating et al.: Leveraging statistical streamflow forecasts to trigger flood preparedness in Peru

Table 2. The suite of potential predictor variables for the statistical forecast model and their Pearson correlation coefficient with FMA
streamflow at Piura at Puente Sanchez Cerro and MAM streamflow at Marafién at San Regis. SST and SLP predictor spatial extents are
determined by NIPA (Fig. 3) and correlations are presented by phase. J (F) indicates January (February).

Potential predictor ~ Abbreviation  Spatial region Time frame Pearson correlation with streamflow
Piura Maraiién ‘ Piura Maraiién
Streamflow SF - J F 0.84* 0.84*
Precipitation P Basin average ] JF | 0.88* 0.68*
Soil moisture SM 1st PC of statistically significant J F 0.69* 0.74*
(p < 0.05) regions within 12° N
t023°8S,35t081.5°W
Air temperature T Basin average J F 0.26 0.11
GCM precipitation  P(GCM) 4.5105.5°S,79.5t0 80.5°W FMA - 0.84* -
forecast
‘ ElNifio Neutral LaNifia ElNifio La Nifia
Sea surface SST 1 PC of NIPA-identified regions NDJ  DJF -0.79*  —0.90* 0.85* —0.93* —0.80*
temperature
Sea level pressure ~ SLP 1 PC of NIPA-identified regions  J F —0.82*  —0.74* 0.79* 0.90*  —0.72*
* indicates statistically significant correlations (p < 0.05).
35000{ (a) 15001 (b) é
30000
2 21000
£ E
; ; e
< 25000 B
: :
o o
» » 500
= <
< 20000 Z
15000 0
La Nifa El Nifio All Years La Nifa Neutral El Nifio All Years
Marafién Piura

Figure 2. Violin plots of seasonal streamflow by ENSO phase. For the Marafién River at San Regis (n = 19), 12 historical years are classified
as La Nina conditions (MEI < 0) and 7 are classified as El Nifio conditions (MEI > 0). For the Piura River at Puente Sanchez Cerro (n = 36),
11 years are classified as La Nifia (MEI < —0.5), 11 as neutral (—0.5 < MEI < 0.5), and 14 as El Nifio conditions (MEI > 0.5).

sented by the preseason (3-month average) value of MEL
This produces two sub-models for the Marafién River at
San Regis and three for the Piura River at Puente Sdnchez
Cerro. Each sub-model leverages a principal component re-
gression (PCR) framework to predict seasonal (3-month) av-
erage streamflow derived from daily observations obtained
from SENAMHI as described in Sect. 2.5. In this framework,
a principal component analysis is conducted on eligible pre-
dictors (Table 2) which are first scaled to have a unit vari-
ance. A subset of PCs is retained according to North’s rule
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of thumb (North et al., 1982) for input into a MLR model;
however, in all cases just one PC is retained, yielding a linear
model of the form

ey

where y; is observed seasonal streamflow in year ¢, B is the
intercept, B; is a fitted regression coefficient, and e is the
residual or error. Predictors may be eligible for inclusion in
some sub-models and not others, subject to their correlation
with streamflow in that phase (Table 3). To be included, the

yr = Bo+ B1PCi +e,

https://doi.org/10.5194/nhess-21-2215-2021



C. Keating et al.: Leveraging statistical streamflow forecasts to trigger flood preparedness in Peru 2221

(a) Piura El Nifio Neutral

-1.00 -0.75 -0.50 -025 000 025 050 075 100

Figure 3. Correlation maps of seasonal streamflow at (a) Piura (FMA) and (b) Marafién (MAM) with preseason SSTs by ENSO phase. Only
regions statistically significantly correlated at p < 0.05 are included.

predictor in question must be both significantly correlated
with streamflow across all years and significantly correlated
with streamflow in the subset of phase-specific years. A hind-
cast assessment is conducted by evaluating each year in the
historical record using the appropriate sub-model to predict
seasonal streamflow. For example, in 1998, the preseason
(NDJ) average MEI value is 2.43; thus, the positive phase
sub-model is selected to predict Piura River FMA stream-
flow.

The creation of probabilistic forecasts is essential as early
action decisions are conditioned on the forecast likelihood
of an extreme event exceeding the 80th percentile. For each
sub-model, a drop-1-year cross-validation hindcast is con-
structed, refitting the regression coefficients each year, to
produce one deterministic seasonal streamflow prediction per
year. When model residuals are normally distributed, accord-
ing to the Shapiro—Wilk test with alpha =0.05, an error dis-
tribution is created by taking 1000 random samples. Other-
wise, an error distribution is derived by directly sampling the
model residuals with replacement 1000 times. The resulting
error distribution is then added to the cross-validated deter-
ministic prediction to create a probabilistic prediction of av-
erage streamflow in the upcoming season. This process is
repeated for each year to create a probabilistic hindcast for
all years in the sub-model. Hindcasts from each sub-model
are subsequently joined to create a full observational period
probabilistic hindcast.

3.4 Final predictor selection

Of the potential predictors listed in Table 2, Table 3 shows the
subset selected for each statistical forecast sub-model based
on correlation significance as described in Sect. 3.3. The first
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PC of statistically significant preseason SST regions is in-
cluded in all sub-models for both locations. For Marafién’s
negative phase sub-model, no PCs are unique by North’s rule
of thumb and so only the first PC is retained; in all other
cases only the first PC is unique. Preseason streamflow is
included in both sub-models for Marafidn, in line with its
greater temporal autocorrelation, while it is included in only
the positive phase sub-model for Piura. No preseason precip-
itation observations are included for Marafidn; for Piura the
GCM precipitation forecast is included in the negative phase
sub-model, and preseason observed precipitation is included
in the positive and neutral phase sub-models. For all sub-
models the predictand is seasonal (3-month) average stream-
flow (m? s~1), which is predicted by (multiple) linear regres-
sion using the PC(s) retained in Table 3.

3.5 GIloFAS and multi-model predictions

Monthly hindcasts over the period 1981-2017 from the phys-
ically based GloFAS seasonal model (version 2.0) for the two
study locations are available from ECMWF (https://www.
globalfloods.eu/general-information/data-and-services/, last
access: 19 May 2019). Both study locations were used for
model calibration (Ervin Zsoter, personal communication,
6 May 2021). GIoFAS forecasts are initialized on the first
day of every month and become publicly available on the
10th day of the month. They consist of 25 ensemble mem-
bers predicting mean weekly streamflow to 17 weeks out;
predictions for weeks 1-13 (approximately 3 months) are re-
tained. A mean bias correction is applied to the GloFAS en-
semble mean according to the difference between mean ob-
served and predicted seasonal streamflow across all years. In
addition to evaluating the statistical model and GloFAS in-
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Table 3. Final predictors included in each sub-model.

Site Sub-model Number of  Predictors retained from PCs PCI1 % variance PC2 % variance
observations  Table 2 retained explained explained

Marafion ~ Negative phase 12 SST, SLP, SF, SM 1 61 22
Positive phase 7 SST, SLP, SF, SM, P 1 87 9

Piura Negative phase 11  SST, SLP, SM, P(GCM) 1 74 15
Positive phase 14  SST, SLP, SE, SM, P, P(GCM) 1 78 13

Neutral phase 11  SST, SLP, SM, P, P(GCM) 1 68 15

dependently, a multi-model forecast is also constructed uti-
lizing a least-squares linear regression to assign weights ac-
cording to the relative Pearson correlation strength between
observed streamflow and each model’s predictions (Block et
al., 2009).

3.6 Forecast verification and performance measures

Forecast performance for the three models (statistical, Glo-
FAS, and multi-model) is evaluated at both locations by
Pearson correlation coefficient, rank probability skill score
(RPSS), probability of detection (POD), false alarm ratio
(FAR), and threat score (TS).

RPSS is an extension of the rank probability score (RPS),
which measures the categorical accuracy of a forecast
(Wilks, 2011). Here, two categories are selected to repre-
sent high-flow and non-high-flow conditions, with the 80th
percentile of observed seasonal streamflow representing the
threshold. The RPS is the sum of the squared differences
between the forecast and observed categorical probabilities,
and it is given as

B E) G e

j=1

where J is the number of categories, y; is the forecast prob-
ability in the jth category, and o; is 1 if the event is observed
in that category and otherwise 0. RPS scores range from 0 to
1. RPSS indicates the relative skill of the forecast compared
to a reference forecast and takes the form
RPSS=1-— R—PS 3)
RPSreference
RPSS can vary from —oo to 1; values above 0 are considered
skillful compared to the reference forecast, and a value equal
to 1 indicates a perfect categorical forecast. Mean RPSS val-
ues across all hindcast years are presented; the reference
forecast is based on historical averages (i.e., climatology).
POD, or “hit rate”, describes the fraction of observed ex-
treme (e.g., high-flow) events that are correctly predicted and
is calculated as
hits

POD = ———, 4
hits + misses
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where a perfect score is 1 (Wilks, 2011). Because POD can
be artificially improved by issuing more extreme predictions,
it must be evaluated in combination with FAR. FAR de-
scribes the fraction of predicted extreme events that did not
occur, or “false alarms”, calculated as

false alarms

" hits + false alarms’ )
where a perfect score is 0 (Wilks, 2011).

TS, also called the “critical success index”, is the number
of predicted extreme events divided by the total number of
times that an extreme event is either predicted or observed,
calculated as

hits
" hits + misses + false alarms’

(6)

where a perfect score is 1 (Wilks, 2011). TS is preferred over
accuracy (the sum of true positives and true negatives divided
by the total number of events) for situations where the ex-
treme category is rarely observed. As previously stated, the
extreme category is classified as seasonal streamflow values
in the top 20 % (80th percentile) of observations — four events
for Marafién and seven events for Piura.

4 Results and discussion
4.1 Large-scale predictor regions

The locations of SST regions that correlate significantly with
streamflow vary according to the phase of ENSO (Fig. 3).
Piura streamflow in El Nifio years is positively associated
with equatorial Pacific SSTs, encompassing the Nifio 1+2
and Nifo 3 regions (Fig. 3a). This finding aligns with pre-
vious work demonstrating that above-average precipitation
in northwest Peru is driven primarily by ENSO (e.g., Lagos
et al., 2008). Strong El Nifio years (e.g., 1983, 1998) have
a tendency to lead to extreme flooding in northwest Peru,
though floods have also affected the region in other ENSO
phases, for example, in 2008, a moderate La Nifia (EM-DAT,
1988). Piura streamflow variability in neutral and La Nifia
years is associated with SSTs in the northwest Pacific, north
Atlantic, and tropical Indian oceans (Fig. 3a). This is similar
to the findings of Bazo et al. (2013), who show an influence
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of SST anomalies in the tropical Indian and Atlantic oceans
(in addition to the tropical Pacific) on precipitation in north-
west Peru.

Marafién streamflow during El Nifio years is positively
(negatively) associated with northeast Pacific (northwest At-
lantic) SSTs (Fig. 3b). In La Nifia years, when average
Maraiién streamflow is greater and hydrologic disasters are
more common in Amazonian Peru (Rodriguez-Morata et al.,
2018), streamflow is associated with SST regions in the trop-
ical Atlantic and Indian oceans. While El Nifio episodes
have been linked to below-average precipitation in the Ama-
zon basin (Garreaud et al., 2009; Marengo, 2004), signif-
icant teleconnections between equatorial Pacific SSTs and
Marafién streamflow are not identified here (Fig. 3b).

4.2 Statistical model forecasts

The primary focus of this study is to predict the occurrence
of high-flow conditions to initiate flood preparedness actions,
based on a sufficient percentage of the probabilistic predic-
tion surpassing a predefined threshold. The probabilistic sta-
tistical forecast model at each location effectively captures
interannual variability and extremes (Figs. 4 and 5). For the
2 most extreme years in the observed record (2012 and 2015
for Maraiién; 1983 and 1998 for Piura), the full distribu-
tion of predicted streamflow falls above the 80th percentile
of observed streamflow (black dashed line). In these years,
decision makers are highly certain of an impending extreme
event. However, for the majority of years, some smaller frac-
tion of the forecast distribution falls above the 80th percentile
threshold, presenting a greater challenge (less certainty) in
decision making. When evaluated categorically, the Marafién
forecast model identifies all 4 high-flow years while the fore-
cast for Piura identifies 6 out of 8 (Table 4). El Nifio years
are associated with lower forecast uncertainty for Marafién;
the average standard deviation of error distributions is 20 %
smaller than in La Nifia years. For Piura, La Nifia conditions
result in lower forecast uncertainty; the average standard de-
viation of error distributions is 58 % larger for years in the
neutral phase and 113 % larger in El Nifio years. Despite low
streamflow in many years, the Piura forecast’s mean predic-
tion captures the approximate magnitude of the top three ex-
tremes in 1983, 1998, and 2017 (Fig. 5). An analysis of flood
reports from news media and global disaster databases in-
cluding EM-DAT and the Dartmouth Flood Observatory in-
dicates that flooding along the Piura River occurred in each
of these years, though not necessarily at the station itself.

4.3 Multi-model forecasts

For the multi-model forecast, least-squares weighting results
in a significantly higher weight (81 %) assigned to the sta-
tistical model for Marafién, while the models are weighted
equally (50 % each) for Piura. In both cases, multi-model
Pearson correlation and RPSS values are similar to the in-
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Figure 4. Marafién River at San Regis MAM streamflow hindcast
using the statistical prediction model. The black solid line illustrates
observed MAM streamflow; the black dotted line indicates the 80th
percentile of MAM observed streamflow. Red (blue) boxes repre-
sent years with preseason El Nifio (La Nifia) conditions.
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Figure 5. Piura River at Puente Sdnchez Cerro FMA streamflow
hindcast using the statistical prediction model. The black solid line
illustrates observed FMA streamflow; the black dotted line indicates
the 80th percentile of FMA observed streamflow. Red (blue) boxes
represent years with preseason El Nifio (La Nifia) conditions.

dependent statistical forecast model (Table 5). The Marafién
multi-model detects all four true positives in the upper cate-
gory — two more than GloFAS and the same as the statistical
model. The Piura multi-model detects four true positives —
one fewer than the statistical model and one more than Glo-
FAS. For both Piura and Maraiién, the multi-model forecast
improves POD, FAR, and TS compared to GloFAS (Table 5).

4.4 Triggering early action

While verification metrics offer useful ways to evaluate fore-
cast performance, a forecast’s true value is determined by
the end user (Hartmann et al., 2002). Because floods are
the main hydro-meteorological threat in the Peruvian Ama-
zon (IFRC, 2019) and Piura basins, correctly predicting the
years with high seasonal streamflow is of outsized impor-
tance compared to predicting low-flow years. The Peruvian
Red Cross EAP steps for flooding are triggered when a fore-
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Table 4. Contingency table for statistical, GloFAS, and multi-model predictions of high-flow (top 20 %) and low-flow (bottom 80 %) MAM

(FMA) streamflow for the Maranén (Piura) River.

Observed conditions

Statistical ‘ GloFAS ‘ Multi-model

Low High | Low High | Low High

Predicted Maranién Low 14 0 13 2 14 0
conditions High 1 4 2 2 1 4
Piura Low 26 3 27 5 28 4

High 2 5 1 3 0 4

Table 5. Mean RPSS, Pearson correlation coefficient, POD, FAR, and TS for each location and forecast approach. Bold text indicates best

score per metric per site (ties between two models are both bolded).

Statistical GloFAS Multi-model
Piura Marafién ‘ Piura Marafién ‘ Piura Marafién
RPSS 0.43 0.67 0.18 0.25 0.43 0.67
Correlation 0.91 0.95 0.91 0.84 0.94 0.96
POD 0.63 1 0.38 0.5 0.5 1
FAR 0.29 0.2 0.25 0.5 0 0.2
TS 0.5 0.8 0.33 0.33 0.5 0.8

cast predicts a 75 % chance (probability) of streamflow above
the 80th percentile (threshold). This criterion is applied to the
three probabilistic forecasts (statistical model, GloFAS, and
multi-model) to understand when actions would be triggered
based on each forecast at San Regis on the Marafién River
and at Puente Sanchez Cerro on the Piura River.

Based on the above criteria, 4 years in the historical
record qualify for early action at San Regis (2009, 2012,
2013, 2015). Out of these 4, the statistical model predicts
action in 3 out of 4 years and GloFAS in 2 (2009 and
2012) (Fig. 6). While an observed event does not necessi-
tate observed flooding or flood impacts, the Centre for Re-
search on the Epidemiology of Disasters (CRED) Emergency
Events Database (EM-DAT) provides evidence of flooding
in the western Amazon (Loreto region), though not nec-
essarily on the Marafién, in 2012, 2013, and 2015 (the
three highest seasonal averages on record), suggesting that
early actions in these years could be warranted. In 2012
and 2015, when Maraiion observed streamflow exceeds the
threshold required for early action (26671 m?s~!) by over
3500 m> s~!, the statistical model triggers with a 100 % prob-
ability of threshold exceedance in both cases. In 2013, when
observed streamflow is just 37 m3 s~! above the threshold,
the statistical model predicts an 80.9 % probability of thresh-
old exceedance while the following year, when streamflow
is 25m3s~! below the threshold, the statistical model pre-
dicts a 91.4 % probability — its only false positive. GlIoFAS
correctly triggers early action in 2009 and 2012 with 100 %
and 92 % probabilities of threshold exceedance respectively

Nat. Hazards Earth Syst. Sci., 21, 2215-2231, 2021

while missing in 2013 and 2015 with predictions of 28 % and
40 % exceedance. In 2 out of the 4 years with observed trig-
gers, the statistical model and GloFAS threshold exceedance
probabilities differ by at least 50 percentage points (Fig. 6).
Additionally, in 2017, when streamflow misses the threshold
for early action by only 242m3s~!, the two models differ
in their predicted probability of threshold exceedance by 78
points. Collectively, these differences suggest that the two
models capture distinct signals in years critical for disas-
ter preparedness. Despite this, the multi-model least-squares
ensemble forecast, weighted heavily toward the statistical
model, mirrors the latter’s predictions (Fig. 6).

At Puente Sanchez Cerro, all models trigger early actions
during the three largest events in 1983, 1998, and 2017 —
each of which resulted in significant impacts in the Piura
River basin, collectively killing over 1000 people and affect-
ing another 3.6 million (BBC News, 2017; Caviedes, 1984;
EM-DAT, 1988; French and Mechler, 2017; USAID, 1998)
(Fig. 7). The statistical model includes two false positives in
2000 and 2016 with 93 % and 87 % predicted probabilities of
exceedance (observed streamflow was at the 74th percentile
in 2000). Additional historical years (2001, 2002, 2008, and
2012) also meet the criteria for early action with evidence
of flooding in the Piura province, collectively resulting in
60 deaths and affecting 508 000 people (EM-DAT, 1988), al-
though streamflow magnitudes were substantially lower. Of
these the statistical model captured two (2008, 2012), while
GIoFAS failed to capture any.
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Figure 6. Maraifién River at San Regis early actions triggered (> 75 % probability of exceeding threshold) based on observed data (black)
and season-ahead predictions from statistical model (orange), GloFAS (green), and multi-model (blue). Dark colors represent a > 75 %
probability of threshold exceedance; light colors represent a 50 %—75 % probability of threshold exceedance; grey represents a < 50 %
probability of threshold exceedance. Open circles represent false positives. Circle sizes are scaled to probability of threshold exceedance.
Black (grey) bars indicate relative magnitude of streamflow compared to the 80th percentile in cubic meters per second (m3s~1.
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Figure 7. Same as Fig. 6 for Piura River at Puente Sanchez Cerro.
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A modified trigger mechanism captures some lower-
magnitude events at San Regis; if early action is triggered
based on just a 50 % probability of exceeding the 80th per-
centile, the statistical model also triggers in 2009 and the
multi-model triggers in 2009 and 2013 (thus each capturing
all four observed events). However, caution is advised when
reducing this threshold probability in practice as it will likely
result in additional false positives. This study forgoes any
systematic attempt to assess when early actions may or may
not be warranted (e.g., determining an optimal threshold) in
favor of illustrating that additional skill in detecting observed
early action triggers is possible with the use of tailored statis-
tical and multi-model forecasts. Further optimization of trig-
ger probabilities may be possible and would require under-
standing regionally specific flood impacts and expected ben-
efits of early action.

4.5 Varying the probability required to trigger action

Skill in detecting events is highly dependent on the thresh-
old probability required to trigger early action. In general,
a lower threshold for action will result in instances of wor-
thy action but also more actions in vain. Conversely, a higher
threshold for action will prevent false positives yet will re-
duce the likelihood that early actions will be taken when
needed. This tolerance for false positives when implement-
ing early action is an open question for decision makers and
may depend on numerous technical, institutional, and polit-
ical factors outside the scope of this study. Here, the trig-
ger mechanism for early action, which requires a 75 % prob-
ability of streamflow above the 80th percentile, suggests a
tolerance for a FAR of 0.25 for an unbiased forecast. Cru-
cially, the small number of events when each forecast triggers
early action (four for San Regis and seven for Puente Sanchez
Cerro) creates significant uncertainty in the POD, FAR, and
TS values calculated for the hindcast period (Fig. 8). How-
ever, notwithstanding sources of model-related uncertainty,
achieving an acceptably low FAR at the 75 % probability
level with 95 % confidence is possible for Piura with the Glo-
FAS and multi-model forecasts (Fig. 8d), although no fore-
cast achieves this for Marafién (Fig. 8c). Importantly, uncer-
tainty in these metrics is generally reduced in the statistical
and multi-model forecasts compared to GloFAS (e.g., Fig. 8a
from 30 % to 65 % probability). The confidence intervals for
the statistical and multi-model forecasts also tend to be off-
set in the more skillful direction compared to GloFAS. This
is particularly the case for TS, a validation metric that de-
scribes the degree to which observed events correspond to
forecast events, and is useful for evaluating the benefits of
additional true positives against the costs of additional false
positives when true positives are relatively rare (Fig. 8e and
). However, there are notable exceptions to this trend, such
as the large uncertainty in FAR for the statistical model at
Piura above a 55 % probability. While these results do not
highlight an optimal probability threshold for decision mak-
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ers, the statistical and multi-model forecasts generally appear
more skillful across most probability levels. In addition, false
positives incurred by reducing the trigger probability may
also be offset by a stopping mechanism in which action is
halted if the forecast is not confirmed 30 d later (IFRC, 2019).

4.6 Implications of binary trigger mechanism

The binary nature of the trigger mechanism is vulnerable to
situations where similar observed conditions result in early
action in one instance but not in another. Marafién River
streamflow, which averages 24 600 m> s~! during the MAM
season, exceeded the 80th percentile by substantial margins
in 2012 and 2015 (3571 and 4319 m3 s~ ! respectively), while
in 2009 and 2013 it exceeded the 80th percentile by just
899 and 37 m3 s~!, respectively (Figs. 4 and 6). On the other
hand, in 2014, streamflow averaged just 25 m3s~1 (0.09 %)
below the 80th percentile — warranting no early action based
on the trigger criteria. Similar effects are visible in Figs. 5
and 7 for the Piura River: in 1999, streamflow was exactly
equal to the 80th percentile and so did not count as an ob-
served trigger (the stated mechanism requires that stream-
flow exceeds the 80th percentile). It is also possible that ob-
servational error in streamflow measurements exceeds these
differences. From an operational standpoint, such edge cases
beg the question: should some amount of early action still oc-
cur? An observed seasonal mean near the early action thresh-
old, especially at the more variable Piura River, may con-
tain much larger instantaneous discharge values and thus true
flood risk may be obscured. Operationally, a trigger mecha-
nism for early action at the Piura River should account for
increased within-season variability of flows, perhaps by low-
ering the action threshold. Aside from these issues, a sharply
defined threshold allows a potentially improper distinction
between worthy actions and actions in vain. In practice, ab-
sent a physical basis underpinning the action threshold, the
difference in benefits resultant from early action may be neg-
ligible for instantaneous discharge just above and below the
threshold. This reinforces the need to also evaluate forecasts
with complementary performance measures paired with local
contextual knowledge. A modified trigger approach could in-
corporate multiple tiers of early actions triggered by increas-
ing levels of forecast confidence. Likewise, if forecast con-
fidence later decreases, a tiered stopping mechanism could
halt actions in reverse order.

5 Conclusion

This paper describes a method by which locally tailored
season-ahead statistical forecasts can improve the detection
of trigger-based early actions and is illustrated with a case
study for two sites in Peru. The statistical forecast devel-
oped in this study — as well as a multi-model ensemble fore-
cast composed of the statistical and an operational physically
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based model — consistently outperform the aforementioned
physically based model for both study locations. This method
may be transferrable to other regions with evidence of sea-
sonal streamflow predictability, especially in cases exhibit-
ing a nonlinear relationship between streamflow and climate
variables. However, validation of NMME forecasts in other
regions is advised due to spatial variability in predictability.
Opportunities for improving FbA via this framework may
also be present in regions where global flood models are un-
calibrated or display low skill.

While higher seasonal average streamflow values typically
imply a greater probability of both flooding and the need for
early action, lower seasonal average streamflow values may
obscure high daily peaks that nonetheless result in flood im-
pacts. Thus, even a perfect seasonal forecast may not reflect
all instances where early action is justified. Additionally, be-
cause the statistical model developed here is optimized for
performance across all years, further refinement prioritiz-
ing the detection of appropriate trigger levels for early ac-
tion in high-flow years may be warranted. Such efforts could
involve alternative statistical or physical modeling frame-
works, along with development of additional predictors and
evaluation of category selection applied in the prediction pro-
cess. Future work could also consider machine learning tech-
niques with the goal of leveraging remotely sensed data to
detect antecedent conditions at a subbasin scale and the state
of the climate system.
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