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A B S T R A C T

Food insecurity continues to grow in Sub-Saharan Africa (SSA). In 2019, chronically malnourished people
numbered nearly 240 million, or 20% of the population in SSA. Globally, numerous efforts have been made
to anticipate potential droughts, crop conditions, and food shortages in order to improve early warning
and risk management for food insecurity. To support this goal, we develop an Earth Observation (EO) and
machine-learning-based operational, subnational maize yield forecast system and evaluate its out-of-sample
forecast skills during the growing seasons for Kenya, Somalia, Malawi, and Burkina Faso. In general, forecast
skills improve substantially during the vegetative growth period (VP) and gradually during the reproductive
development period (RP). Thus, mid-season assessment can provide effective early warning months before
harvest. Skillful forecasts (Nash Sutcliffe Efficiency (NSE) > 0.6 and Mean Absolute Percentage Error (MAPE)
< 20%) appear approximately two dekads after the VP; for example, skillful forecasts appear in May in Kenya
and Somalia, January in Malawi, and July in Burkina Faso. During model development, effective EO features
are also identified, such as precipitation and available water during VP, and dry days and extreme temperatures
in early VP. Compared to monthly standard EO features, sub-monthly (dekadal), non-standard, and serial
EO features significantly improve forecast skills by + 0.3 NSE and -10% of MAPE, demonstrating the ability
to precisely and effectively capture favorable or detrimental crop development conditions. Finally, skillful
forecasts and practical utility are demonstrated in the recent normal and dry years in each region. Overall,
the developed yield forecasting system can provide skillful predictions during the growing season, supporting
regional and international agricultural decision-making processes, including informing food-security planning
and management, thereby helping to mitigate food shortages caused by unfavorable climate conditions.
1. Introduction

Globally recurring droughts, conflicts, and extreme weather have
contributed to severe food shortages and acute food insecurity. In 2019,
750 million people, or 10% of the world population, were exposed to
severe levels of food insecurity, and 135 million people were classified
as acutely food insecure (FAO, 2021; FSIN, 2020). In Sub-Saharan
Africa (SSA), the chronically undernourished population reached 240
million people, or 20% of the population (FAO, 2021). In 2016 and
2017, approximately 13 million people faced severe hunger, primarily
in East Africa, as a result of multi-season droughts (Funk et al., 2018).

Operational drought and food security early warning systems have
demonstrated their value in facilitating effective humanitarian actions
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E-mail address: donghoonlee@ucsb.edu (D. Lee).

by identifying the most food-insecure populations in need of assis-
tance (Basso et al., 2013; Chipanshi et al., 2015; Fritz et al., 2019;
Guimarães Nobre et al., 2019; Nakalembe et al., 2021). For example,
the Famine Early Warning Systems Network (FEWS NET) has developed
several analytical tools and conducted diagnostic analyses and scenario
assessments to assist international relief agencies and national govern-
ments in planning for and responding to humanitarian crises (Funk
et al., 2019). Recently, the Group on Earth Observations Global Agricul-
tural Monitoring Initiative (GEOGLAM) Crop Monitor alerted Ugandan
authorities to an impending crop failure due to severe drought in 2017.
This early warning triggered the country’s disaster risk financing fund,
which assisted approximately 150,000 people and saved $2.6 million
vailable online 6 June 2022
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Table 1
Subnational maize yield data used in this study.
Country Crop season Administrative

level
Number of
districts

Reference
year

Years of
record

Kenya Long-rain season
(Mar–Aug)

Level 1 46 2013 34 years

Somalia Gu season
(Mar–Aug)

Level 2 32 1990 21 years

Malawi Main season
(Oct–Jul)

Level 2 27 2003 32 years

Burkina Faso Main season
(May–Dec)

Level 2 45 2001 34 years

The reference year refers to the year in which administrative boundaries were established.
uring the crisis (Nakalembe, 2018). More global agricultural monitor-
ng systems and operational assessments are reviewed in Nakalembe
t al. (2021).

Using Earth Observation (EO) data, numerous efforts have been
ade to provide early warning of droughts contributing to food in-

ecurity (Funk et al., 2018; Shukla et al., 2020, 2021). Recently,
ue to its increased spatial and temporal coverage, open access, and
ear-real-time operation, EO data has been extensively used for large-
cale, subnational-level crop yield monitoring and forecasting. For
xample, Davenport et al. (2019) developed and evaluated the out-of-
ample performance of end-of-season maize yield forecasts for Kenya
nd Somalia using five EO products. Laudien et al. (2020) used weather
nd sea surface temperature data to develop a statistical within-season
orecast of maize yields at the subnational level for all of Tanzania with
lead-time of 6 weeks. Schwalbert et al. (2020) developed in-season
unicipality-scale soybean yield forecasts in Brazil using vegetation

ndices, temperature, and precipitation data. Machine learning is also
idely used for crop yield forecasting, as it is capable of modeling non-

inear relationships between EO data and crop yield, and of processing
ig data efficiently (Paudel et al., 2021).

Despite extensive EO data and modeling frameworks (Basso and Liu,
019; Schauberger et al., 2020), additional understanding is needed
o maximize the utility of EO data and enhance the functionality and
ccuracy of EO-based crop yield forecast models, ultimately fostering
mproved in-season food security assessments in food-insecure regions
nd smallholder areas (Davenport et al., 2019). For example, while
easonal or monthly accumulations or means of EO data are frequently
sed to monitor and forecast crop conditions (Funk et al., 2019), there
as been relatively little investigation of yield forecasting at a finer
emporal resolution, such as a dekad (i.e., a period of 10 consecutive
ays), which can provide a better representation of crop-growth dy-
amics and phenology (FAO, 2019). Similarly, the utility of various
roperties derived from the same EO product has been demonstrated in
odeling crop development, including the number of dry days and the

requency of extremely high and low temperatures (Basso et al., 2013;
airns et al., 2013; Laudien et al., 2020). Quantifying the benefits of
hese perspectives enables a better understanding of the characteristics
f EO data and increases its utility for diagnostic analyses and yield
orecasting.

Although current monitoring tools and scenario assessments are
ctively used to anticipate potential droughts, crop conditions, and food
hortages, forecasting systems for operational large-scale subnational
rain yield would be beneficial to foster improved food insecurity early
arning, particularly for food-insecure countries in Sub-Saharan Africa

SSA). A more accurate and reliable forecast system would enable
ecision-makers to monitor crop development and overall crop con-
ition throughout the growing season, ultimately informing decision-
aking processes related to early disaster response and mitigation
easures that reduce food insecurity.

In this study, we outline and describe a machine learning- and EO-
ased, subnational maize yield forecasting system for four countries
n SSA — Kenya, Somalia, Malawi, and Burkina Faso. Specifically, we
erform several different forecasting experiments with the goal of de-
2

eloping an operational machine learning-supported grain forecasting
system. We measure skills of crop yield models by their out-of-sample
performance, which is worthwhile for two reasons. First, sample sizes
of yield data are typically small, resulting in overfitted models. Second,
crop yield models are frequently used to make deterministic and prob-
abilistic predictions about future yields. It, therefore, seems natural to
assess their capacity to describe out-of-sample yields (Norwood et al.,
2004). Along with evaluating out-of-sample forecast skills, we specifi-
cally investigate (1) the most skillful EO features, (2) the quantitative
benefits of the finer temporal resolution and non-standard EO data
information, and (3) operational forecast performances for recent years.
Although some technical and decision-making processes remain to be
improved, this study provides the groundwork for a more reliable
and practical African grain-yield forecasting and food-security warning
system with enhanced resolution and spatial coverage.

2. Data

2.1. Maize yield data

Maize production is critical for food security in SSA; eastern and
southern Africa consume 85% of maize produced for food (Shiferaw
et al., 2011). We obtain maize yield data from the FEWS NET’s Data
Warehouse (FDW). The FDW updates crop data on a regular basis using
agricultural reports from individual countries. Specifically, we obtain
district-level maize-harvested areas and quantity-produced data for
Kenya’s long-rain season (Mar–Aug), Somalia’s Gu season (Mar–Aug),
Malawi’s main season (Oct–Jul), and Burkina Faso’s main season (May–
Dec) (Table 1). The FEWS NET’s crop reporting unit is typically based
on administrative boundaries at the time of data collection. However,
administrative boundaries can change over time, so historical crop
reporting units are frequently inconsistent with current boundaries. We
correct these spatial inconsistencies by aggregating or disaggregating
time-series crop data according to the changes in administrative bound-
aries of individual countries. We then calculate maize yields using the
corrected harvested areas and quantity produced.

Because all EO data are available beginning in 1981, we use maize-
yield data from 1982. Finally, we select districts with more than
14-year records, yielding a total of 150 districts, with a mean of
31 years; Kenya (46 administrative level-1 districts with a mean of
34 years), Somalia (32 administrative level-2 districts with a mean of
21 years), Malawi (27 administrative level-2 districts with a mean of
32 years), and Burkina Faso (45 administrative level-2 districts with
a mean of 34 years) (Table 1). The long-term mean and coefficient
variation of yield data are illustrated in Fig. 1 and Figure S1, respec-
tively. Additional processing of the maize yield data is described in the
supplementary materials S1.

2.2. Crop-growing season

The growing season period is obtained from the Joint Research
Centre’s Anomaly Hotspots of Agricultural Production (ASAP) database
(Rembold et al., 2019) (https://mars.jrc.ec.europa.eu/asap/index.php,

last access: 2 Dec 2021). In ASAP, the mean growing season period is

https://mars.jrc.ec.europa.eu/asap/index.php
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Fig. 1. Long-term mean yield of subnational maize data in (a) Kenya (Long rain season) and Somalia (Gu season), (b) Malawi (Main season), and (c) Burkina Faso (Main season).
defined by a satellite-derived phenology calculated from the long-term
mean of 10-day MODIS normalized difference vegetation index (NDVI)
data. Specifically, we use subnational level start of season (SOS) values,
which are defined as the time at which the NDVI reaches 25% of the
seasonal ascending amplitude and verified using FAO data. This SOS
is moved by two dekads earlier to indicate the phenological start of
crop-development processes, such as sowing and germination. In our
analysis, vegetative growth period (VP) is defined as 6 dekads (60 days)
after SOS, whereas reproductive development period (RP) is defined as
the time following VP. The SOS used in this study is depicted in Figure
S2.

2.3. EO datasets

In this study, we use four operational EO datasets: precipitation,
reference evapotranspiration (ETo; short grass), NDVI, and temperature
(Table 2). Supplementary materials S2 describe the quality and details
of EO products. These datasets were chosen because they provide
operationally usable data with high temporal and spatial resolution
with short delays and low latency. We apply a cropland mask (Fritz
et al., 2015) and take spatial means of each EO data on any cropland
areas across districts.

In addition to four EO datasets, we derive additional EO vari-
ables that have been demonstrated in crop development modeling.
For example, available water is simply calculated by subtracting ETo
from precipitation using the same concept as ‘‘climatic water bal-
ance’’ (Piedallu et al., 2013), except that reference evapotranspiration
is used instead of potential evapotranspiration. The available water on
3

a daily and dekadal basis reflects the surface water content, which is
critical for rainfed crops. The growing degree day (GDD) is the most
common temperature index for determining the plant development
and growth stage (Davenport et al., 2018; Westgate et al., 2004). The
GDD is used in certain crops to assist in planning crop-management
decisions, such as irrigation and pesticide application timing, as well
as harvest scheduling (Hicks et al., 2004). Here, the GDD is calcu-
lated based on the daily maximum and minimum temperatures (see
supplementary materials S3).

2.4. Non-standard and serial EO features

We generate 8 ‘‘standard’’ EO features: dekadal (10 consecutive
days) accumulated precipitation, ETo, available water, and mean of
daily minimum, maximum, and mean temperature, accumulated GDD,
and maximum NDVI. In addition to these commonly used EO features,
we also generate 25 additional ‘‘non-standard’’ EO features from the
same datasets. These 25 features are not used often in crop modeling
and forecasting literature, and we include them here to provide a more
thorough examination of which specific features of an EO dataset are
optimal for crop-yield forecasting.

For precipitation, ETo, and available water, we calculate the num-
ber of days in each dekad when the daily record exceeds the district-
specific long-term (1986–2015) 95, 90, 80, and 50 percentiles or sub-
ceeds long-term 5, 10, and 20 percentiles. Additionally, the number
of dry days (i.e., days of zero precipitation) is included, because this
variable has been identified as a critical predictor in Tanzania (Laudien
et al., 2020) and Sub-Saharan Africa (Cairns et al., 2013). Laudien et al.
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Table 2
A list of Earth observation datasets utilized to forecast yield. The ‘‘Features’’ column describes how we use each product in our statistical models.

Variable Product Spatial and temporal resolution,
and operational delay

Featuresa

Precipitation CHIRPS (Climate Hazards Center
InfraRed Precipitation with
Station data) version 2 (Funk
et al., 2015)

0.05◦ (∼5 km),
1981–present,
Daily data,
3-weeks delay; preliminary data is released
2 days after the end of each pentad
(5 day period)

PACU, PDRY, PA95,
PA90, PA80, PA50,
PB05, PB10, PB20,
*AACU, *AA95, *AA90,
*AA80, *AA50, *AB05,
*AB10, *AB20

ETo NOAA Reference ET (ETo)
Monitoring Dataset (uses
MERRA2 atmospheric reanalysis)
(Hobbins, 2016)

0.125◦ (∼12 km)
1980–present
Daily data
About 10-days delay

EACU, EA95, EA90,
EA80, EA50, EB05,
EB10, EB20, *AACU,
*AA95, *AA90, *AA80,
*AA50, *AB05, *AB10,
*AB20

NDVIb

NOAA Climate Data Record
Advanced Very High-Resolution
Radiometer (AVHRR) version 5

0.01◦ (∼1 km)
1981–present
Daily data

NDVI
USGS eMODIS temporally
smoothed NDVI C6

0.002◦ (∼250 m)
2002–present
Dekadalc data
3 dekads of delay (interim data with cloud
masks are available)

Temperature NOAA CPC global daily maximum
and minimum surface air
temperature

0.5◦ (∼50 km)
1979–present
Daily data
1-day delay

TMAX, TMIN, TAVG,
TA95, TB05, AGDD,
GDDA

aThe features with asterisk are generated using both precipitation and ETo datasets.
bAggregation of two NDVI datasets is represented in the supplementary materials S2.
cThree dekads are used to represent each month. The first two dekads each have 10 days. The final dekad has the remaining days in the month.
(2020) also noted that high temperatures accelerate the development
rate, resulting in a shortened growing season, decreased grain size, and
consequently, declined yields. To account for the detrimental effects
of excessively high or low temperatures, we include the number of
days when the maximum temperature exceeds the 95 percentile or the
minimum temperature subceeds 5 percentile. Finally, the accumulated
GDD anomaly to the long-term (1986–2015) mean is included. Table
S1 contains the abbreviations and descriptions for all 33 EO features.

Along with ‘‘non-standard’’ features at each lead-time, we also
consider ‘‘serial’’ features that accumulate the values of an individual
feature over the course of the forecast season. For example, if the lead-
time is 3 dekads from the starting point, we consider accumulated
precipitation during 1, 2, 3, 1–2, 2–3, and 1-3 lead-dekads. This results
in 33 features at the beginning of the lead-time (18 lead-dekad) and
5,643 serial features at the end of the lead-time (1 lead-dekad) (Fig. 2).

3. Methods

In this study, we develop dekadal maize yield forecast models for a
period of 18 dekads lead-time beginning from the pre-season by taking
the following steps (Fig. 2):

(1) Apply a leave-one-out cross-validation (LOOCV) for all years and
then select the most skillful EO features in each lead-time.

(2) Develop a forecast model using the selected EO features and
the first 70% of yield data (year0 to year𝑡) to predict a yield in
year𝑡+1.

(3) Iterate step 2 for the last 30% of data and measure out-of-sample
forecast skills.

Therefore, an individual forecast model is constructed and validated
for each lead-time, resulting in 18 lead models. The lead models are
then reordered based on their performances. For example, if the D13
lead model outperforms the D12 lead model, we keep it instead of
the D12 lead model, assuming the D12 lead model selected ineffective
EO features (Fig. 2). This framework is applied on a district basis for
4

all countries. Also, a long-term trend of yield data is considered by
detrending the yield data linearly before the model development and
retrending the predicted yield values.

The forecast time horizon is determined using the FEWS NET’s crop
growing calendar and the actual SOS for districts. Although SOS begins
with the start of the crop calendar in all districts in Malawi (October),
it begins earlier in some districts in Kenya, Somalia, and Burkina Faso
(Figure S2). Reflecting this, our forecasts begin in pre-season (i.e., one
month earlier) in Kenya and Somalia (February), and in Burkina Faso
(April).

3.1. Extremely randomized trees (ERT) model

The ERT model is a decision tree-based ensemble regression algo-
rithm that uses randomization and iterations to reduce the chances of
overfitting models to training data. ERT is very similar to the widely
used Random Forest (RF) machine learning algorithm, but has some
differences to reduce model bias and variance while also increasing
computational efficiency (Geurts et al., 2006). Both algorithms ran-
domly select a subset of predictors for each split; however, in ERT,
thresholds are drawn at random for each candidate feature and the best
of these is chosen as the splitting rule. The resulting forest contains
more variable, but less correlated, trees than those in the RF (Geurts
et al., 2006), which means that ensemble predictions are more resilient
to individual model errors. Another difference from RF is that ERT
retains all of the original samples instead of sampling them with
replacement, and this can reduce model bias.

We use the ERT model without parameterization for feature selec-
tion (Step 1). When developing a more optimal forecast model (Step
2), hyperparameter tuning is used to achieve high prediction accuracy
(see supplementary materials S4).

3.2. Skill scores

We use two different skill scores: Nash Sutcliffe Efficiency (NSE) and
Mean Absolute Percentage Error (MAPE). The NSE is nearly identical to
the coefficient of determination and is calculated as one minus the ratio

of the prediction error variance to the observation variance, indicating
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Fig. 2. Conceptual framework of forecast model development. The colored lead-time represents the concept of serial features, such as accumulated precipitation during D18,
D16-D15, D13-10, and D8-D3. This results in a total of 5,643 possible features during 18 lead dekads. While a forecast time horizon is fixed by country (e.g., February–July for
all districts in Kenya), the actual calendar dekads of VP and RP vary by district according to the individual SOS.
how well the model performs against long-term mean predictions. NSE
= 1.0 is considered to be the perfect fit, NSE > 0.75 is considered to
be a very good fit, NSE = 0.64 to 0.74 is considered to be a good fit,
NSE = 0.5 to 0.64 is considered to be a reliable fit, and NSE < 0.5 is
considered to be an unsatisfactory fit (Moriasi et al., 2007).

Additionally, the MAPE is used to evaluate model performance.
While the NSE is used to select features and reorder lead models, we
used MAPE exclusively for exploration and visualization because it is
an intuitive and unit-independent metric that can be used in both low-
and high-yield regions.

3.3. Feature selection

In order to handle the large number of feature candidates, we apply
a two-step feature selection method with LOOCV for all years. We
begin by applying the Boruta algorithm (Kursa and Rudnicki, 2010) to
select 10 to 30 candidate features. In contrast to conventional feature
selection methods, which use a minimal optimal strategy for a small
subset of features with a minimal error, the Boruta algorithm uses
an all-relevant feature selection strategy. Specifically, the Boruta algo-
rithm compares the feature importance (i.e., mean decrease impurity)
to the randomized original features and uses a binomial distribution
to determine which features truly improve performance. If the Boruta
algorithm produces fewer than 30 features for any reason, we calculate
the Gini importance (Breiman, 2001) and then select the best 30
features.

After selecting a subset of features, we use forward feature selection
to determine the optimal set of EO features with the best performance.
Given the emphasis on minimizing error variance in our forecast model
framework, we use the maximum NSE as a criterion for selecting the
optimal set of features. This criterion is also used to reorder the lead
models, but only using model development data in order to preserve
the fixed order and out-of-sample independence.
5

4. Results

4.1. Out-of-sample forecast skills

The out-of-sample forecast skill scores (NSE and MAPE) are illus-
trated in Fig. 3. In general, both skill scores are improved with a
reduction in lead-time in the four countries. Specifically, the NSE sub-
stantially increases until about two dekads after VP, and then gradually
improves during the RP. A decrease in skill with decreasing lead-
time rarely occurs (e.g., NSE in February in Somalia), except when an
inefficient lead model is retained with a higher NSE during the model
development period (first 70% of yield data) but not during the out-of-
sample validation period (last 30% of yield data). In terms of NSE in
the two dekads after VP, Somalia and Malawi show ‘‘good’’ skills (NSE
= 0.65 to 0.74), and Kenya and Burkina Faso show ‘‘satisfactory’’ skills
(NSE = 0.55).

The skill scores are spatially represented in each region (Figures
S3–S5). In Kenya and Somalia, districts with poor NSE scores (< 0.2)
appear during the pre-season (February), but not during the VP (March
and April), with the exception of a few districts in central Kenya and
Somalia. The highest MAPE (> 90%) is found in eastern Kenya, where
yields are low and variable (Fig. 1a and S1a), but are also improved
by lead-time. This strong collinearity between forecast accuracy and
district mean yield is also observed in (Davenport et al. 2019). Since
the end of May, our forecast has become consistently skillful (NSE >
0.5 and MAPE < 30%) for the majority of districts (Figure S3).

In October, Malawi’s southern region presented low NSE scores
(< 0.2), but these rapidly improved in November. Although the most
southerly district (Nsanje district) has an abnormally high percentage
of error, increasing the overall variation of MAPE scores in Malawi
(Fig. 3), the low MAPE scores (< 25%) across the country indicate
relatively high accuracy. In general, similar to the case of Kenya and
Somalia, forecasting skill improves substantially across Malawi during
the early VP (October–November) and gradually improves thereafter
(Figure S4). While more precise forecasts can be achieved with a shorter
lead-time, reliable forecasts (NSE > 0.6 and MAPE < 25%) can be
obtained as early as November.
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Fig. 3. Forecast skill scores (NSE and MAPE) of all districts in each country; lines and shades represent national mean and 90% confidence intervals, respectively. The higher
(lower) value of NSE (MAPE) indicates better forecast performance. The vertical green lines mark the national median vegetative growth period (VP).
Fig. 4. Frequency of EO features selected at R4 (4th dekad of reproductive development period) across all countries. The ‘‘P’’, ‘‘V’’, and ‘‘R’’ represent pre-season, vegetative
growth, and reproductive development periods, respectively. Lead-time outlined by green lines are vegetative growth periods. Blue and red-colored feature names denote ‘‘wetness’’
and ‘‘dryness’’ features, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Finally, in Burkina Faso, poor forecasting skills in the pre-season
(April) substantially improve during the VP (May and June) (Figure
S5). In most districts, reliable forecasts (NSE > 0.5) begin in June;
however, in five districts in the western and northern regions, negative
NSE scores did not improve until September. This is also due to the fact
that, during the model development period, lead models are reordered
with ineffective features. As with Malawi, Burkina Faso has consistently
low and stable MAPE scores (< 20%), except in the far north (Oudalan
province), where yield data are highly variable (coefficient of variation
> 80%) (Figure S1c).

4.2. Skillful EO features

The model with a shorter lead-time appears to select EO features
that have better overall forecasting skill, as the most skillful forecasts
tend to be those started after the VP when the agroclimatic condi-
tions for the growing season are more determined. We illustrate the
frequency of EO features selected by a particular lead model at the 4th
dekad of reproductive development period (R4) across four countries
(Fig. 4) and in each country (Figure S6). Here, we aggregate the R4 lead
models based on the growing season of an individual district, which is
defined by SOS (Figure S2), so the actual calendar dekads of the R4
lead models could be different regionally.

Certain features are commonly chosen across all countries. As ex-
pected, precipitation-related features are among the most commonly
selected (Fig. 4). Many of these areas have primarily rainfed cropping
systems. In particular, accumulated precipitation and features of high
precipitation percentiles (e.g., PA80 ‘‘Number of days precipitation
6

over 80 percentile’’) are frequently selected during the pre-season and
VP in Kenya and Somalia, as well as during the VP and early RP in
Malawi and Burkina Faso (Fig. 4 and Figure S6). Low-precipitation
features are rarely chosen, aside from the PDRY ‘‘Number of dry days’’,
which is frequently selected around early VP in Kenya, Malawi, and
Burkina Faso. This importance of dry-matter characteristics in crop
development modeling is also demonstrated by previous studies, such
as consecutive dry days (Laudien et al., 2020), heat stress at high
temperatures (Cairns et al., 2013), and soil water deficit and extreme
degree days (Basso and Ritchie, 2014).

Features related to available water (PRCP-ETo) are frequently se-
lected throughout the VP, such as AA90 ‘‘Number of days available
water above 90 percentile’’ in Kenya and Somalia. This indicates that
sufficient water is required to avoid moisture stress during the vegeta-
tive development. This important matter of dry conditions in early VP is
particularly well captured in Malawi and Kenya by highly selected ‘‘dry-
ness’’ features, such as dry days, high evaporative demand, and low-
available water features. In Somalia, the districts in the southern region
are irrigated, which may explain why ‘‘dryness’’ features are rarely se-
lected with the exception of EA95 ‘‘Number of days evapotranspiration
above 95 percentile’’.

In the four countries, the TMAX ‘‘Mean of daily maximum temper-
ature’’ is actively selected around the early VP. Although our temper-
ature dataset is surface air temperature, it is known that soil tempera-
tures greater than 15 ◦C and sufficient moisture during this emerging
period promote uniform and rapid germination, resulting in improved
growth and a reduced risk of fungus damage (Westgate et al., 2004). On
the contrary, extreme temperatures during this period can harm plants
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nd result in substantial stand loss. In Kenya and Malawi, the TMIN
‘Mean of daily minimum temperature’’ is actively selected during the
arly VP stage, when the growth point is still underground, and the
arly leaf stage is strongly influenced by cold soil temperature (Kaspar
nd Bland, 1992). Additionally, the TAVG ‘‘Mean of averaged temper-
ture’’ is frequently selected around the early VP stage in Somalia and
urkina Faso (Figure S6).

Maize is also sensitive to moisture stress during the RP, which
s the stage of active grain filling. Specifically, maize that developed
ell during the VP but is stressed during the grain filling is more

usceptible to stem and root rot infection (Sah et al., 2020). In our re-
ults, while the ‘‘wetness’’ features are frequently selected during early
P, the ‘‘dryness’’ features are rarely selected. The two-step feature
election procedure used in this study is more performance-oriented
han importance-oriented. Whereas the latter considers the significance
f individual features, the former takes into account the performance of
he grouped features. For example, while NDVI clearly correlates with
ur yield data, NDVI is frequently selected only in Somalia (Figure S6),
ossibly due to competition from other feature combinations, such as
etness features.

.3. Improvements from non-standard and serial EO features

The proposed forecast framework makes an important advancement
y incorporating standard, non-standard, and serial EO features that
an provide better information about specific temporal crop develop-
ent. To quantify the improvements, we evaluate forecast skills using
variety of model settings. Specifically, we retain the same model

ramework and use only non-standard, or serial, or both non-standard
nd serial, EO features. Additionally, we use the same experimental
etup with monthly aggregated features to compare performances of
onthly and dekadal features (Fig. 5; all cases are illustrated in Figure

6). Except for the first few dekads, the features are selected in a similar
umber in all lead-times and different feature settings; thus, changes in
orecast skills are primarily due to more effective features.

Dekadal forecasts, on average, outperform monthly forecasts, demon
trating how temporally finer EO features can provide superior in-
ormation (Fig. 5). The dekadal data can more precisely represent
he conditions of EO data (e.g., dry or wet) during crop-development
eriods, such as the dryness features selected in early VP (e.g., dry spell)
Fig. 4). When both non-standard and serial features are used, dekadal
orecasts provide approximately +0.16 of NSE and −6% of MAPE in all

lead-times compared to monthly forecasts, and these gaps narrow with
7

shorter lead-times. m
The dekadal ‘‘non-standard’’ and ‘‘serial’’ features improve the fore-
cast skills by +0.09 of NSE and −3% of MAPE and +0.05 of NSE
nd −1% of MAPE than those of the original dekadal features, re-
pectively, indicating usefulness of additional unique information over
erial characteristics of the original EO data (Figure 6S). Further-
ore, results indicate that using both dekadal non-standard and serial

eatures together can more precisely and effectively capture favor-
ble or detrimental crop-development conditions. This is based on
ignificantly improved forecasting skills, by +0.16 of NSE and −5%
f MAPE, which is slightly higher than the combined improvements
f the individual cases. Monthly forecasts exhibit the same pattern.
onthly non-standard and serial features, in particular, outperform

ekadal, original features slightly. This means that data with additional
nd serial characteristics can provide comparable capabilities to data
ith a higher temporal resolution. Finally, when compared to monthly
riginal features, dekadal non-standard and serial features significantly
mprove forecasting abilities by +0.3 NSE and −10% of MAPE.

.4. Operational forecast performances for recent years

To evaluate the forecast system’s operational performance, the out-
f-sample forecast was tested for recent normal or dry years in each
egion (Figs. 6–8). Here, the forecast models were trained until a year
rior to the testing year as an actual practice, and we only consider 4
onths from the growing season that forecast information to be useful

nd critical to management.
For Kenya and Somalia, 2015 (normal year) and 2011 (dry year) are

valuated (Fig. 6). In 2015, our forecast slightly underestimated yields
n low-yield regions (e.g., eastern and southern Kenya and Somalia)
nd slightly overestimated yields in high-yield regions (e.g., central
nd western Kenya). Overall, the 2015 forecast presents highly accurate
redictions across the regions and especially in the low-yield regions.
n comparison to the 2015 forecast, the 2011 forecast shows a reversal
f trends in the low and high-yield regions. Although a high percentage
f errors occurs in eastern Kenya, forecast skill is generally high (NSE

0.85). Given that 2011 was a year of severe drought and led to
ajor food insecurity and famine in parts of East Africa (Haan et al.,
012), this performance is promising, as it indicates that crop-yield
orecasts could have provided early indication of possible decline in
ood production. In both years, skillful forecasting (NSE > 0.8) begins
n March and continues throughout the growing season, particularly
n the high-yield region (e.g., central and western Kenya). With the
xception of a few districts in the low-yield region, our forecasts
enerally maintain the signs of forecasted yields, allowing for consistent

anagement decisions.
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Fig. 6. Out-of-sample forecasts for Kenya and Somalia in (a) 2015 (normal year) and (b) 2011 (dry year) at the end of March, April, May, and June. The scatter plots represent
the same regional results as the June forecasts (i.e., each circle represents a district). In both maps and scatter plots, all colors represent percentages of errors on the same scale.
Fig. 7. Same as Fig. 6, but for Malawi in (a) 2015 (normal year) and (b) 2016 (dry year) at the end of October, November, December, and January. The scatter plots represent
the same regional results as the January forecasts (i.e., each circle represent a district).
Malawi is evaluated using the 2015 (normal) and 2016 (dry) years
(Fig. 7). In 2015, skillful forecasts (NSE > 0.77) began to appear in
early VP (October) and gradually improved with lead-time. In a few
districts in southern Malawi, the yield is overestimated (MAPE > 60%),
but this is also improved with lead-time. At the end of January, our
forecast demonstrates a high degree of accuracy (NSE is 0.88 and MAPE
is 11%). In 2016, Malawi declared a state of emergency due to drought,
and central and southern Malawi were predicted to experience food
insecurity (FEWS NET, 2017a). Our forecast for this period indicates
fair skills (NSE > 0.6) from the early VP. Forecasting accuracy gradually
8

improves with lead-time, but moderate overestimations persist until
January in the low-yield region (i.e., southern Malawi). Although the
MAPE appears to be 85% overall, the absolute percentage of errors ap-
pears to be less than 20% without this low-yield region. Given that the
actual harvest month is July, the skillful out-of-sample performances
from October and November could provide reliable and timely support
for agricultural and food-security management (Fig. 3). However, a
warning for potential overestimation in low-yield regions (i.e., southern
Malawi) should be accompanied.
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Fig. 8. Same as Fig. 6, but for Burkina Faso in (a) 2014 (normal year) and (b) 2016 (dry year) at the end of April, May, June, and July. The scatter plots represent the same
regional results as the July forecasts (i.e., each circle represent a district).
For Burkina Faso, 2014 (normal year) and 2016 (relatively dry year)
are evaluated (Fig. 8). In 2014, our forecast presents fair forecasts (NSE
> 0.5) from the early VP (April), and skills improve significantly in May
and are maintained with lead-time. The 2016 forecast presents even
better performances (NSE > 0.72 in April). The Sahel (northern) region
shows excessive errors in April and May, but they are also improved
in June. In both years, our forecasts marginally underestimate yields
across the country with substantially low errors from June (NSE > 0.7
and MAPE < 14%). This high accuracy might be attributed to the less
variable and relatively consistent yield records in Burkina Faso. Based
on this operational evaluation and the overall forecast skills (Fig. 3),
our forecasts can provide accurate predictions from June. Given that
the harvest month in Burkina Faso is December, accurate forecasts from
June show promising performance.

5. Concluding remarks

In this study, we develop an Earth observation (EO) and machine-
learning-based subnational maize yield forecast system for Kenya, So-
malia, Malawi, and Burkina Faso. The forecast system is designed to
provide dekadal yield prediction throughout a growing season in each
country to support various regional and international food-security as-
sessment activities. Along with evaluating out-of-sample forecast skills,
we also investigate the most skillful EO features, the quantitative
benefits of the finer temporal resolution and non-standard EO data
information, and operational forecast performances for recent years.
Results described in Section 4 lead to the following conclusions:

1. In general, forecast skills improve substantially during the vege-
tative growth period (VP) and gradually during the reproductive
development period (RP) (Fig. 3). Skillful forecasts (NSE > 0.6
and MAPE < 20%) appear approximately two dekads after the
VP: May in Kenya and Somalia, January in Malawi, and July in
Burkina Faso. Poor forecast skills also appear in some districts
where yield data are substantially low and variable (e.g., eastern
Kenya and northern Burkina Faso) or where the model selects
ineffective features (e.g., western Burkina Faso). With the ex-
ception of these low-skill districts, fair forecasts (NSE > 0.5 and
MAPE < 25%) are available even in the early VP (March for
Somalia and October for Malawi) and late VP (April for Kenya
and June for Burkina Faso).

2. Effective EO features are examined based on the frequency of
the selected features. In general, wetness features, such as high
precipitation and high available water, and dryness features,
such as number of dry days, are frequently selected in VP. As
expected, indicators of sufficient water requirement during the
9

vegetative development to avoid moisture stress serves as a
valuable indicator of agricultural performance. Maximum and
minimum temperatures are also frequently chosen, particularly
during the early VP, indicating favorable germination conditions
or damage to early leaf development.

3. We discovered that dekadal features outperform monthly fea-
tures and that non-standard features outperform serial features
slightly. When compared to monthly original EO features, the
dekadal non-standard and serial features significantly improve
forecasting skills by +0.3 of NSE and −10% of MAPE. This
demonstrates the ability of temporally finer, non-standard EO
features to precisely and effectively capture favorable or detri-
mental crop-development conditions.

4. The operational performances are also evaluated for the recent
normal and dry years in each region. Although potential uncer-
tainty warrants being stated in the low-yield region, especially
when drought is anticipated, as in 2011 for Kenya and 2016 for
Malawi, our results demonstrate the practical usefulness of the
developed operational forecast system in general.

Numerous limitations may be worth investigating in future studies.
For example, we aggregated EO data on cropped areas using a static
cropland mask corresponding to 2005. A more precise (i.e., crop-
specific) and time-varying mapping of cropland location and extent
could improve the accuracy of the aggregated EO data (Peterson and
Husak, 2021; Zhang et al., 2019). Other practical EO datasets with
data latency or shorter records, such as soil moisture or solar radiation,
could be used to improve operational forecasting skills in the late part
of the growing season. More advanced categorical or probabilistic yield
forecasts should be investigated to improve forecasts, particularly in
low-yield regions where food shortage is a critical issue.

The effect of model accuracy on food insecurity risk management
may be heteroscedastic, depending on the agricultural and socioeco-
nomic status of the location. Thus, it is worthwhile to tailor crop yield
forecast models in order to accurately forecast extremely low yield
conditions, particularly in food-insecure regions where food shortage is
a critical problem. A future study could consider more advanced cate-
gorical and probabilistic yield prediction techniques, such as weighting
a model to accurately predict the bottom 20% percentile of yield
records. Additionally, because our approach develops a model for each
district, this weighted model could be used exclusively in food security
districts at the higher risk of acute food insecurity (Shukla et al.,
2021) or when only severe droughts or floods are anticipated, while
maintaining overall accuracy for middle and high yield ranges.

In this study, we use only climate and vegetation index data to fore-
cast maize yield. However, yields in some regions may be substantially
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influenced by factors that the model does not account for, such as local
management (e.g., land preparation, sowing, irrigation, and fertilizer),
natural phenomena (e.g., flood effects, plant disease epidemics, and
pest outbreaks), and political and socioeconomic changes (Laudien
et al., 2020). For example, pests and pathogens account for 30% of
maize yield losses in SSA (Savary et al., 2019), and the risk of maize-
specific, virus-induced food insecurity in SSA has increased (Mahuku
et al., 2015). This underlines the critical need for incorporating local
expert knowledge into operational forecast assessment. Therefore, the
forecast should be part of an early warning system that integrates
many information sources for the evaluation of the food-security situa-
tion (Laudien et al., 2020). The results presented here demonstrate that
data-driven modeling can perform well in more humid regions where
approaches like the Water Requirement Satisfaction Index (WRSI) can
saturate. For example, despite a severe 2015–16 drought, the 2015–16
WRSI shows little water stress in Malawi, whereas, in fact, poor harvests
led to crisis levels of insecurity (FEWS NET, 2017b).

The analyses and experiments conducted in this paper are intended
to assess out-of-sample performances during the model validation pe-
riod. In actual practice, overall predictability and utility might be
enhanced by training and calibrating the models based on full yield
records and providing probabilistic uncertainty for low-skill zones at
a given lead-time. Overall, the developed yield forecasting system
demonstrates its operational capability of providing skillful predictions
during the growing season, as well as its potential to support regional
and international agricultural decision-making processes, such as trig-
gering relief mechanisms and informing food-security planning and
management, thereby mitigating food shortages caused by unfavorable
climate conditions.
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data.cpc.globaltemp.html (last access: 2 Dec 2021). CHIRPS precipita-
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eddi/globalrefet/ (last access: 2 Dec 2021). eMODIS NDVI C6 data
is available at https://earlywarning.usgs.gov/fews/search/Africa (last
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FEWS NET’s data policy; please contact the corresponding author for
data availability.

The maize yield data set was compiled using reports from the
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