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A B S T R A C T

We comprehensively examine methodologies tailored for subnational crop yield and production forecasting by
integrating Earth Observation (EO) datasets and advanced machine learning approaches. We scrutinized diverse
input data types, cross-validation methods, and training durations, focusing on maize production and yield
predictions in Burkina Faso and Somalia. Central to our analysis is the comparative assessment of using time-
invariant features within a panel data (PD) model versus a time-series data (TD) model. The TD model per-
formed well in predicting both production and yield, while the PD model offered comparable yield predictions.
Time-invariant features such as livelihood zones, soil properties, and cropland extents enriched the spatial un-
derstanding of crop data, enhancing the R-squared by 0.09 (0.21) for production and 0.11 (0.03) for yield, with
corresponding reductions in the Mean Absolute Percentage Error by 90 % (238 %) for production and 5 % (4 %)
for yield in Burkina Faso (Somalia). While Burkina Faso’s consistent crop data allowed for effective modeling
with brief training, Somalia benefited from the adaptability of the PD model to crop statistics outliers, partic-
ularly with extended training in high-producing regions. The PD approach showed promise in addressing data
gaps, although predicting crop productions for unobserved districts remained a challenge. Our findings highlight
the harmonious integration of EO data and machine learning in the field of agricultural forecasting and
emphasize the importance of region-specific methodologies, especially in the rapidly changing landscape of EO
data convergence.

1. Introduction

Sub-Saharan Africa (SSA) faces escalating food insecurity challenges.
In 2022 alone, 120 million individuals, representing 12 % of the popu-
lation in SSA, faced acute food insecurity, experiencing significant
malnutrition and struggling to meet minimum food consumption needs
(FEWS NET, 2023; Mitra et al., 2022). Significant strides have been
taken to bolster early warning systems for agricultural droughts and
famine (Fritz et al., 2019; Funk et al., 2019). Recent advancements have
spotlighted the role of Earth Observation (EO) technologies. With
enhanced global availability and long-term records, such as global
climate observations and simulations, EO has become a pivotal tool for
forecasting agricultural trends and outcomes (Lee et al., 2022; McNally
et al., 2019; Nakalembe et al., 2021; Nakalembe and Kerner, 2023;
Shukla et al., 2021; Verdin et al., 2005). For instance, insights from

long-term precipitation data allow for the prediction of both grain yield
and market price (Anderson et al., 2024 in review; Davenport et al.,
2021; Lala et al., 2021). Turner et al. (2022) use climate forecasts to
derive the water requirement satisfaction index. Moreover, the imme-
diate in-season prediction of crop production has grown indispensable
for proactive famine monitoring, early warning measures, and strategic
management in SSA (Nakalembe et al., 2021).

Crop yield prediction models typically fall into three categories:
process-based crop modeling (Andreadis et al., 2017; Delincé, 2017),
remote sensing based prediction (Lobell et al., 2015), or empirical or
statistical modeling combining both methods (Davenport et al., 2019;
Lee et al., 2022). Augmented by EO and Machine Learning (ML),
empirical models, particularly statistical ones, have emerged as
powerful tools for large-scale crop productivity forecasting
(Schauberger et al., 2020; Van Klompenburg et al., 2020). Broadly, these
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statistical models include two approaches: time-series and panel data
prediction, as traditionally categorized in the field of Economics and
Social Sciences (Frees, 2004; Wooldridge, 2010). Specifically, the panel
(or longitudinal) data tracks the same subjects over time, capturing
multiple observations per subject. This approach accounts for hetero-
geneity between entities and over time, which cannot be detected with
pure cross-sectional or time-series data (Baltagi, 2021; Wooldridge,
2010).

When examining regional agricultural statistics, panel data refers to
an aggregated dataset comprising time-series of crop statistics across
multiple administrative units. This type of data allows for a more
nuanced analysis of agricultural trends and productivity by capturing
dynamic changes and regional differences. For example, Hu and McAl-
eer (2005) utilized a panel dataset of 30 Chinese provinces over a 7-year
span (1991–1997) to estimate agricultural production efficiency. You
et al. (2009) investigated the impact of climate on Chinese wheat yield
growth using crop-specific panel data. Adah et al. (2017) analyzed
cereal productivity in West Africa through panel data, demonstrating its
effectiveness in capturing the complex dynamics of agricultural pro-
ductivity across regions. Furthermore, Lu et al. (2020) found that
non-irrigated crops in the United States are more sensitive to severe
droughts compared to irrigated crops, using a panel data regression
model.

For subnational agricultural prediction, a time-series data (hearafter
TD) model is fitted to a single dataset within a given region, while a
panel data (hereafter PD) model is fitted to data across multiple regions.
Several studies have recently attempted to forecast subnational crop
yields using the TD or PD models. For example, Lee et al. (2022)
developed TD models to predict subnational maize yields for Burkina
Faso, Malawi, Kenya and Somalia using four EO products and machine
learning techniques. Laudien et al. (2022) use TD-based yield and har-
vested area forecast models to predict national level production of
maize, sorghum, and millet in Burkina Faso. Laudien et al. (2020) also
applied TD models to predict maize yields with climate drivers for
Tanzania. Conradt et al. (2016) showed improved modeling of annual
yield changes for winter wheat and silage maize in about 300 German
counties by aggregating separately estimated time series models into
cluster-based panel models. Davenport et al. (2019) developed panel
models and evaluated the out-of-sample performance of end-of-season
maize yield forecasts for Kenya and Somalia using five EO products.

Typically, TD models offer higher accuracy because they tailor pre-
dictions for a specific unit unless data is insufficient. On the other hand,
PD models come with several advantages: they encompass more obser-
vations and variability and, hence, minimize the impacts of poor data
quality, grant greater degrees of freedom, minimize multicollinearity,
account for individual heterogeneity, and facilitate the easy identifica-
tion and measurement of variable dynamics, as well as capturing dy-
namic shifts in cross-sectional units over time (Hsiao, 2007; Wooldridge,
2010) (Table 1). When it comes to modeling crop statistics, PD models
further benefit from utilizing time-invariant (i.e., unchanging over time)
data. This static data can shed light on the spatial heterogeneity of
agricultural conditions, including aspects like land cover, cropping
systems (e.g., rainfed vs. irrigation), soil properties, and more.

PD approaches can also be useful (or the only option) if the time
series is short or uneven (an unbalanced panel) across administrative

units, as is often the case in SSA. The PD approach, with its ability to fill
data gaps, can estimate crop yields in regions or periods where data is
scarce or absent.

Consequently, this study delves into the nuances of forecasting
subnational crop productions and yields in SSA. Specifically, our ob-
jectives are to:

(1) Evaluate the efficacy of PD and TD models, and discern primary
influential predictors,

(2) Determine whether incorporating time-invariant data improves
the accuracies of PD and TD models for forecasting crop pro-
ductions and yields compared to models that only include time-
varying data,

(3) Assess the advantages of the PD model over the TD model and its
potential to refine operational forecasts

To achieve this, we fit maize production and yield prediction models
for Burkina Faso and Somalia, representing countries with abundant and
sparse data, respectively. By employing diverse sampling methods,
limiting the use of time-invariant data, and altering training periods, we
aim to compare the predictive capacities of these modeling approaches
and assess their performance across time and space.

2. Data

2.1. Crop data

In this study, we predict subnational maize production and yield,
both critical for evaluating food insecurity in SSA. We sourced the
subnational crop statistics from the FEWS NET Data Warehouse (FDW).
This repository contains consolidated crop production, harvested area,
and yield records from local governments, ensuring quality control. For
Burkina Faso and Somalia, the original data sources are the Ministry of
Agriculture of Burkina Faso and FAO’s Food Security and Nutrition
Analysis Unit, respectively. For Burkina Faso’s main maize-growing
season, the dataset comprises records from 45 administrative level-2
districts spanning 36 years, from 1985 to 2021. Similarly, for the Gu
season of Somalia, the dataset encompasses 31 administrative level-2
districts with records spread over 26 years, from 1995 to 2021 (Table 2).

In both countries, the long-term trends are distinctly observable.
While Burkina Faso’s maize production, area, and yield display upward
trajectories, Somalia’s corresponding metrics reveal declining trends
(Fig. 1). Fig. S1 depicts the temporal trends in maize production and
yield across all districts, while Fig. S2 depicts the spatial distribution of
the mean and coefficient of variation of maize production and yield.

While some studies employ filtering or detrending techniques to
segregate these extended trends and assess interannual climate impacts,
we incorporate these trends directly into our model, using a growing
year variable to discern their contributions (Davenport et al., 2019). To
ensure the subnational crop data aligns seamlessly with the latest
administrative boundaries, we perform several calibration and data
refinement steps, elaborated in Text S1. Including the crop statistics for
Burkina Faso and Somalia used in this study, an open-access subnational
crop statistics dataset for African countries has been developed for sci-
entific analysis (Lee et al., 2024).

2.2. Input feature selection

To forecast crop productivity in SSA, a set of time-varying and time-
invariant features were carefully selected from EO data and other rele-
vant sources. The selection process was guided by the need to capture
the essential climatic, soil, and agro-economic conditions that influence
crop productivity. Below, we provide a detailed listing and justification
for each category of features, supported by relevant literature. Also,
specific details of the EO datasets described in Table 3.

Table 1
The comparative strengths and weaknesses of time-series and panel data models
as delineated in the literature.

Type Pros Cons

Time-series data
(TD)
prediction

Higher accuracy for a specific unit Vulnerability to data
gaps and overfitting

Panel data (PD)
prediction

Robust against data gaps and data
quality issues; Incorporates diverse
spatial predictors

Lower accuracy for a
specific unit
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Table 2
Subnational maize production and yield data used in this study.

Country Growing season Administrative
level

Number of
districts

Number of record
years

Data source

Burkina
Faso

Main season (June-August); harvest concludes in
December

Level 2 45 37 years
(1985–2021)

Ministry of Agriculture, Burkina Faso

Somalia Gu season (March-May); harvest concludes in
July

Level 2 31 26 years
(1995–2020)

FAO’s Food Security and Nutrition
Analysis Unit

Fig. 1. National maize production, area, and yield for (a) Burkina Faso’s main season and (b) Somalia’s Gu season. We note that the combined national production
and area figures might be marginally lower than the officially reported national values due to missing or excluded records at the administrative level-2 data.

Table 3
Overview of Earth Observation (EO) datasets used to predict maize production and yield. The “Features” column specifies the EO feature(s) derived from each dataset.

Category Variable Dataset Spatial and temporal resolution, and latency Features (references)

Time-
varying
features

Precipitation CHIRPS (Climate Hazards Center
InfraRed Precipitation with Station data)
version 2 (Funk et al., 2015)

0.05◦ (~5 km), 1981–present, daily data, ~3
weeks latency; preliminary data is released 2 days
after the end of each pentad (5 day period)

Precipitation, Dry days

Temperature NOAA CPC global daily maximum and
minimum surface air temperature

0.5◦ (~50 km), 1979–present, daily data, ~1 day
latency

Maximum temperature, Minimum
temperature, Average temperature, Growing
Degree Days (GDD), Killing Degree Days
(KDD)

Reference ET NOAA Reference ET (ETo) Monitoring
Dataset (uses MERRA2 atmospheric
reanalysis) (Hobbins, 2016)

0.125◦ (~12 km), 1980–present, daily data, ~10
days latency

ETo for short reference crop (ETos), ETo for
long reference crop (ETrs)

Rootzone soil
condition

Famine Early Warning Systems Network
(FEWS NET) Land Data Assimilation
System (FLDAS) (McNally et al., 2017)

0.1◦ (~10 km), 1982-present, daily data, ~20 days
latency

Rootzone soil moisture, Rootzone soil
temperature

NDVI NOAA Climate Data Record Advanced
Very High-Resolution Radiometer
(AVHRR) version 5 NDVI

0.01◦ (~1 km), 1981–2019, daily data, currently
non-operational

NDVI

USGS eVMOD/eVIIRS NDVI ~375 m, 2002–present, dekadal, ~3 dekads
latency (interim data with cloud masks are
available)

Time-
invariant
features

Cropland mask IFPRI-IIASA cropland mask (Fritz et al.,
2015)

0.0083◦, static data Cropland area (Cropland Area) and
Proportion of cropland area to total area
(Cropland Percent)

Soil properties Global Gridded Soil Information -
SoilGrids (Hengl et al., 2014)

0.0083◦, static data, four depth strata including D1
(0–5 cm), D2 (5–15 cm), D3 (15–30 cm), and D4
(30–60 cm).

Available soil water capacity (Soil WC), Soil
organic carbon stock (Soil OCS), Soil pH
index (Soil pH), Soil texture class (Soil
Texture)

Livelihood
zone

FEWS NET Livelihood zone Polygons of livelihood zones are rasterized and
aggregated to administrative districts; 2014
(2015) Livelihood zone is used for Burkina Faso
(Somalia)

Livelihood zone class
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2.2.1. Time-varying features
Time-varying features capture the dynamic aspects of the environ-

ment that change over time and directly impact crop growth and yield
(Table 3).

Precipitation Metrics: We use CHIRPS (Climate Hazards Center
InfraRed Precipitation with Station data) precipitation data (Funk et al.,
2015). Precipitation is essential for understanding water availability for
crops, with studies demonstrating that precipitation patterns signifi-
cantly influence crop productivity (Funk et al., 2008; Lobell et al.,
2011). The number of dry days (days with less than 1 mm of precipi-
tation) helps assess drought conditions and stress periods, which pro-
foundly impact crop yields (Lee et al., 2022; Mishra and Singh, 2010).
This metric is calculated based on CHIRPS daily precipitation.

Temperature Metrics: NOAA CPC global daily maximum and mini-
mum surface air temperature data are used for temperature metrics,
including maximum, minimum, and average temperatures, which are
critical for crop development. High temperatures can lead to heat stress
(Hatfield et al., 2011), while low temperatures can impact germination
and growth (Porter and Gawith, 1999). Average temperature provides
an overall indication of the conditions affecting growth cycles. Addi-
tionally, Growing Degree Days (GDD; sum of daily average temperatures
over 10 ◦C) indicate crop growth potential (Mcmaster, 1997), while
Killing Degree Days (KDD; sum of daily maximum temperatures over 30
◦C) indicate potential damage to crops (Butler and Huybers, 2015).

Evapotranspiration Metrics: The NOAA Reference Evapotranspira-
tion (ET) monitoring dataset, which includes solar radiation information
(Hobbins, 2016), is used for ET metrics. ET for Short Reference Crop
(ETos) serves as an indicator of water loss from a reference crop, critical
for irrigation planning (Allen et al., 1998). ET for Long Reference Crop
(ETrs) provides a comparative measure for a different crop reference
(Jensen et al., 1990).

Rootzone Soil Metrics: Rootzone soil moisture and temperature are
critical for understanding water availability and temperature effects in
the root zone, which directly influence crop uptake and growth
(Beauchamp and Lathwell, 1967). These metrics are sourced from the
Famine Early Warning Systems Network Land Data Assimilation System
(FLDAS) (McNally et al., 2017).

Vegetative Condition: We use the Normalized Difference Vegetation
Index (NDVI), a key indicator of vegetation health and biomass
(Anyamba and Tucker, 2012). We blended two NDVI datasets to cover
the entire time period, including NOAA Climate Data Record Advanced
Very High-Resolution Radiometer (AVHRR) NDVI version 5 for
1982–2002 and USGS EROS eVMOD/eVIIRS for 2002–2021. The
eVMOD NDVI is a calibrated version of USGS EROS MODIS (eMODIS)
NDVI, matched with eVIIRS NDVI using a geometric mean regression to
consistently monitor drought-induced vegetative shifts (Skakun et al.,
2018). The specific blending procedure is described in Text S2.

Using the International Institute for Applied Systems Analysis
(IIASA) and International Food Policy Research Institute (IFPRI) crop-
land mask (Fritz et al., 2015), we spatially aggregated climate and
vegetative conditions over cropland areas. We then consolidated the
daily or dekadal data into monthly district-level values, using summa-
tion for precipitation, reference ET, and rootzone soil moisture features,
GDD and KDD, averaging for other temperature features, and taking the
maximum for NDVI. While alternatives to these datasets exist, our se-
lection prioritizes their fine resolution for the SSA region and timely
operational availability (Lee et al., 2022).

2.2.2. Time-invariant features
Time-invariant features represent the static characteristics of the

environment that do not change significantly over time but are vital for
understanding the baseline conditions of the agricultural landscape.
Here, we incorporate three time-invariant datasets: cropland mask, soil
attributes, and livelihood zones. The applicability of these spatial
datasets can vary based on the specifics of each country. It’s important to
mention that we did not account for other critical aspects like

fertilization, irrigation, and field management, primarily due to their
inconsistent availability across both time and space.

Cropland Mask: Using the IIASA-IFPRI cropland mask, we quantified
the actual cropland area and its relative proportion within the total land
area of each district. The cropland area and the proportion of cropland
area to total area provide insights into the agricultural intensity of the
region. Larger cropland areas can indicate higher potential yields
(Monfreda et al., 2008), while the proportion of cropland area to total
area reflects the relative extent of cropland, indicating agricultural in-
tensity (Fritz et al., 2015).

Soil Attributes: We obtained soil property data from the International
Soil Reference and Information Centre (ISRIC) - World Soil In-
formation’s SoilGrids1km platform (Hengl et al., 2014). This includes
metrics like available soil water capacity, soil organic carbon stock, soil
pH measured in water solution, and soil texture classifications, which
are critical for crop growth. The soil’s ability to retain water (Rawls
et al., 1982), soil fertility and health (Lal, 2004), nutrient availability,
and microbial activity (Brady and Weil, 2008), and water retention and
drainage properties (Hillel, 1982) all play essential roles in crop sus-
tainability and productivity. The same crop mask is also applied to
extract soil properties of croplands at the district level.

Livelihood Zones: We incorporated data from the FEWS NET’s
Livelihood Zone (LHZ). The LHZ class represents socio-economic clas-
sifications affecting agricultural practices and resilience strategies. The
LHZ delineates regions with similar food and income sources, market
access, local topography, environmental conditions, and farming prac-
tices, such as agropastoral or irrigated methods (FEWS NET, 2011). As
LHZ typically spans multiple districts, we determined the predominant
LHZ category on cropland in each district.

3. Methods

The TD model pertains to time-series data for a specific administra-
tive unit, while the PD model captures multiple units concurrently,
proving useful in large-scale analysis. One of the benefits of the PD
model is that its parameters are tuned for multiple units, identifying
significant factors across the entire region, such as rainfall patterns and
soil quality, thereby aiding decision-making on food security
assessments.

As panel data is utilized, model performance also depends on how
the data is trained and tested, typically through cross-validation over
time and space. This is crucial for estimating crop statistics that are
unavailable for certain regions or years, enabling effective data gap
filling. This study investigates four cross-validation techniques: Random
K-fold (RK), Leave-District-Out (LDO), Leave-Year-Out (LYO), and Time-
series (TS) cross-validations, as illustrated in Fig. 2.

• Random K-fold (RK) cross-validation: This method utilizes a ran-
domized selection of crop data, integrating both spatial and temporal
dimensions. It’s commonly employed in spatio-temporal machine
learning models (Meyer et al., 2018; Wang et al., 2023). In our study,
the number of years determines the K value, which ensures the
similar ratio between training and test samples as other
cross-validation techniques. The RK method is ideal for estimating
missing crop data because it employs data from both the target dis-
trict and year.

• Leave-District-Out (LDO) cross-validation: Using a leave-one-out
cross-validation (LOOCV) in the spatial dimension, LDO retains all
spatial and temporal data while focusing on a specific district. It’s
designed to predict data for districts with no existing records.

• Leave-Year-Out (LYO) cross-validation: Like LDO, this employs a
LOOCV approach but in the temporal dimension, centering on a
particular year. This method is intended to simulate either a retro-
spective analysis of past years or a forecast of future years.

• Time-series (TS) cross-validation: A specialized method, TS employs
LOOCV on the temporal dimension while focusing on a designated
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district. It is unique in that it only considers temporal variability of
the district of interest.

Through the exploration and implementation of these cross-
validation methods, we aim to conduct a thorough assessment and
comparison of their performance in crop yield and production estima-
tion, specifically focusing on prediction and the data gap filling.

Next, given the sporadic nature of crop statistics in SSA, we assess
how data availability influences operational forecast precision. We
developed LYO and TS models using datasets covering increments of 5,
10, 15, or 20 years, culminating in the most recent 5 years. In this
framework, each year (yeari) of the last five years was predicted using
data from all preceding years (from year0 to yeari− 1), reflecting a stan-
dard operational approach. We term this method ’operational predic-
tion’, whereas the approach that incorporates future years into the
training set (as shown in Fig. 2) is termed ’cross-validated prediction’.
Therefore, while cross-validated predictions utilize both past and pro-
spective data, operational predictions solely depend on historical data
for training.

Prediction accuracy is primarily assessed using the out-of-sample R-
squared metric, complemented by Mean Absolute Percentage Error
(MAPE). To evaluate the influence of time-invariant features, we made
predictions both including and excluding them, contrasting their out-
comes with predictions based exclusively on time-varying features. For
clarity, when both time-varying and time-invariant features are incor-
porated together, we refer to this as combined features. In both cases, we
integrated the variables "year" and "district" into the PD model. While
"year" was treated as a continuous variable to identify long-term trends,
"district" was categorized to highlight regional disparities, such as dis-
tricts with notably high or low production (Davenport et al., 2019). Each
district was denoted by a unique integer. Given that time-invariant
features lack temporal variability and thus cannot be utilized in the
TD model, predictions using either time-varying or combined features
will yield equivalent results. Overall, we employed 14 time-varying
features and 26 combined features (see Table 3). Time-varying fea-
tures showcase unique temporal patterns throughout a crop calendar,
with pronounced signals detected in early precipitation and late-stage
NDVI (Lee et al., 2022). Drawing insights from the crop calendar,
monthly fluctuations, and correlations with end-season maize produc-
tion (as depicted in Figs. S3 and S4), we utilized seasonal time-varying
features from main growing periods – July to September for Burkina
Faso andMarch toMay for Somalia – as predictors. For NDVI, we applied
a one-month lag relative to the main growing season, accounting for its
peak correlation with crop data occurring one month later than the rainy
season (see Figs. S3 and S4). For consistency, we used the same seasonal
predictors across all districts to streamline our experimental approach.

For predictive modeling, we employed the XGBoost (eXtreme
Gradient Boosting) regression model (Chen and Guestrin, 2016).
Hyperparameter tuning was conducted using Bayesian optimization
search cross-validation from the scikit-optimize Python package.
We assessed feature importance (FI), which indicate the contribution of
each feature to the model’s predictions, by applying the permutation
feature importance technique to predictions made using all data points.
This technique randomizes each feature in the test set and assesses the
subsequent impact on model performance (Breiman, 2001).

4. Results

4.1. Significance of predictors via feature importance

Feature importance was initially evaluated based on predictions
made using combined features (Fig. 3). Consistently across different
evaluations, the "year" variable ranked highly, highlighting the model’s
emphasis on temporal trends. This is particularly pronounced in Burkina
Faso’s data, where a strong upward trend outweighs other spatial and
temporal fluctuations, as visualized in Fig. 1a.

Although the combined features primarily augment the time-varying
features with time-invariant data, they frequently offer superior per-
formance. Notable time-invariant features that stand out include live-
lihood zone, soil pH, soil texture, soil organic carbon stock, and cropland
percentage. These results suggest that the PD model leverages spatial
attributes to categorize or determine crop productivity levels, such as
differentiating between high and low production districts. For instance,
the livelihood zone in Burkina Faso, which encapsulates regional agri-
cultural activities like cereals, livestock, and pastoralism, is a top indi-
cator for maize production. This is due to its ability to provide spatial
insights on production levels.

In Somalia, features like cropland percentage and soil attributes,
including texture and organic carbon stock, rank prominently (Fig. 3cd).
The importance of these features can be attributed to the unique char-
acteristics of the region, such as sparse cropland in lower production
districts and the distinct distribution of soil properties (seen in S2). The
model often flags soil texture and root zone soil attributes as pivotal,
primarily because they critically influence crop yields and nutrient re-
sponses (Maman et al., 2018). Following these top-tier time-invariant
features, time-varying features like NDVI, precipitation, ETo, KDD, soil
temperature, and maximum temperature become relevant, as illustrated
in Fig. 3.

The "year" and "district" variables emerge as the most important
features when the model is confined to time-varying features (Fig. S5).
They are closely followed by features such as NDVI, precipitation, soil
moisture, and a variety of temperature metrics. Remarkably, while the

Fig. 2. An overview of the four cross-validation methods employed for crop production and yield prediction: Random K-fold (RK), Leave-District-Out (LDO), Leave-
Year-Out (LYO), and Time-series (TS) cross-validations. Light-colored cells indicate training samples, while dark-colored cells indicate testing samples.
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"district" frequently stands out as the primary feature, it is superseded by
“NDVI” for maize yield prediction in Burkina Faso.

Overall, incorporating time-invariant features improves the accuracy
of predictions, with an increase in R-squared values ranging from 0.03 to
0.21 and MAPE values ranging from 5 % to 238 % when compared to
using only time-varying features (Table 4). This emphasizes the crucial
importance of spatial characteristics in the panel model, especially for a
comprehensive grasp of the spatial distribution in crop data.

4.2. Cross-validated accuracy with different cross-validation methods and
input data

The prediction accuracy for various cross-validation methods and
input data types are presented in Fig. 4. In general, our predictive
framework exhibits high accuracy for maize production with R-squared
values between 0.7 and 0.85. In contrast, maize yield predictions offer
moderate accuracy, registering R-squared values from 0.45 to 0.5 in
both countries. This suggests that while crop production’s temporal
trends and spatial variations can be more readily associated with the
predictors, the same is more challenging for crop yield. For instance, the
model more readily distinguishes between regions of high and lowmaize
production than it does for maize yield. Burkina Faso exhibits a more
pronounced accuracy disparity between production and yield compared
to Somalia. Comparing the average accuracy of all cross-validation
methods across countries, maize production predictions are marginally
more accurate in Burkina Faso, whereas maize yield predictions are
slightly more precise in Somalia.

As anticipated, of the four cross-validation methods, RK—enriched
with both spatial and temporal information via the combined featur-
es—yields the highest accuracy. TS also exhibits commendable accu-
racy, signifying the robustness of a model tailored for specific districts.
Indeed, when predictions are based exclusively on time-varying fea-
tures, the TS method frequently outperforms RK (Fig. 4). Pinpointing the
primary influential features from district-specific models is challenging;
however, the year, precipitation, NDVI, soil moisture, and ETo short

grass consistently emerge with high feature importance rankings
(Fig. 3). Surprisingly, the LYOmethod yields accuracy levels that are not
only comparable but occasionally even surpass those of the TS method,
particularly when time-invariant features are incorporated.

In predictions utilizing RK and LYO, incorporating time-invariant
features bolsters prediction accuracy by R-squared values ranging
from 0.05 to 0.15. This underscores the importance of comprehensively
understanding a target district’s spatial attributes—such as the liveli-
hood zone or the proportion of cropland—as shown in Fig. 3, to more
accurately attribute temporal variability to predictors. However, the
accuracy of LDO predictions is diminished when time-invariant features
are employed. Since LDO draws on spatial information from other dis-
tricts for training, this can skew predictions if the target district vastly
differs in certain attributes, such as production levels. These spatial
mismatches in LDO predictions are more detrimental to production
predictions than yield predictions due to the greater inherent spatial
variability of production data. This is particularly true for Somalia’s
production predictions, which grapple with pronounced production
disparities across districts, even culminating in entirely errant pre-
dictions as evidenced by negative accuracy values. Lastly, the im-
provements of time-invariant features in LYO prediction of maize yield
in Somalia appear to be minimal (Fig. 4).

4.3. Operational accuracy of PD and TD models predictions with different
training periods

For our operational evaluations, we narrowed our focus to the LYO-
based PD model and TD (TS) model. To assess how prediction perfor-
mances vary with the length of training data, we developed models
using the combined features over varying training durations: 5, 10, 15,
20, and 25 years, up until the last 5 years of data for each country. Then,
we measured the out-of-sample accuracy metrics for the predictions
across all districts over the last 5-year period, where predictions were
made using all preceding years as is standard in operational settings.

In Burkina Faso, the accuracy remains relatively consistent across

Fig. 3. Top 10 feature importance for (a) maize production and (b) maize yield of Burkina Faso, and (c) maize production and (d) maize yield of Somalia. Predictions
are based on combined features and all data points.

Table 4
Accuracy metrics for PD model predictions of maize production and yields in Burkina Faso (BF) and Somalia (SO) with time-varying features only and combined
features. The PD model is trained and tested on entire panel data, with a random split of 80 % for training and 20 % for testing.

Metric Production-BF Yield-BF Production-SO Yield-SO

Time-varying Combined Time-varying Combined Time-varying Combined Time-varying Combined

R-squared 0.81 0.90 0.53 0.64 0.52 0.73 0.60 0.63
MAPE 190 % 100 % 33 % 28 % 609 % 371 % 53 % 49 %
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various training periods and between PD and TD model predictions and
for production as well as yield forecasting. Notably, predictions derived
from just 5 years of data are almost as accurate as those based on longer
training datasets. This suggests that the 5-year data sufficiently captures
most influential predictors, such as temporal trends and livelihood zones
(as highlighted in Fig. 3′s feature importance), allowing for precision
even without longer historical data. Moreover, the consistency in trends
and spatial variability over the 25-year span (referenced in Figs. 1 and
S1) likely contributes to this stability in predictive accuracy over all
training periods.

Furthermore, in Somalia, PD model outperforms TD model in pre-
dicting both maize production and yield. TD model predictions show
consistent performance with the initial 5-year training data but presents
a decline in accuracy as the training period extends. This drop in accu-
racy becomes particularly pronounced when transitioning from 20 to 25
years of training data. In contrast, PD model’s accuracy shows an up-
ward trajectory with longer training spans. Such variation can be
attributed to prominent fluctuations during 1995–2005, which were
characterized by elevated maize production in a few districts and
slightly positive trends that diverged from subsequent years (as depicted
in Figs. 1 and S1). As TD models don’t inherently discriminate between
high or low production areas and lean heavily on temporal variability,
abnormal training data can skew predictions. However, PD’s steadily
increasing accuracy highlights its prowess in balancing both temporal
and spatial variances, making it more adept with extensive data. Despite
the different testing periods, the TD model prediction of Somalia’s
production has a lower operational accuracy than cross-validated ac-
curacy, whereas PD model predictions have comparable operational and
cross-validated accuracy (Figs. 4 and 5). This also implies that the PD
model forecast is less susceptible to error from an operational
standpoint.

Similar trends in operational accuracy is also observed in the MAPE
metric (Fig. S6). Due to its exclusive emphasis on percentage differences,
MAPE generates a comparatively higher level of error in comparison to
R-squared metric, particularly with regard to production predictions.
This is especially substantial in Somalia, where 70 % of total production
is attributed to only seven primary districts. Overall, similar to the R-
squared metric, there are marginal differences in the MAPE scores be-
tween PD and TD model predictions across various training periods.
Similarly, for maize production predictions in Somalia, the PD model
shows ’s MAPE shows marked improvements, whereas the TD model’s
MAPE presents a decline in accuracy (Fig. S6).

The spatial variance in operational accuracy between PD and TD
models is visually illustrated in Fig. 6. Overall, TD model is better for
predicting maize production and PDmodel is better for predicting maize
yields. This result aligns with the spatial distribution observed in cross-

validated accuracy assessments (as in Fig. S7), though the differences in
accuracy are not substantial. These patterns also resonate in regions
with high maize production – areas crucial for gauging food security.
Nonetheless, for maize production predictions in Somalia, PD model
emerges as the more proficient method for major producing regions,
especially given its adeptness in considering the irregular production
statistics from 1995 to 2005 using spatial context.

5. Discussion

Our research conducted an in-depth exploration of methodologies
tailored for predicting subnational crop productions and yields in Bur-
kina Faso and Somalia. We primarily assessed the efficacy of merging
time-varying Earth Observation (EO) features with time-invariant fea-
tures in a panel data (PD) model, contrasting it with a time-series data
(TD) model. Initially, we analyzed influential predictors using feature
importance, both including and excluding time-invariant features, to
gauge their significance. We then constructed maize production and
yield prediction models using three PD-based and one TD cross-
validation techniques: Random K-fold (RK), Leave-District-Out (LDO),
Leave-Year-Out (LYO), and Time-series (TS) cross-validations. Addi-
tionally, we established models over different training durations to un-
derstand the impact of data availability on forecast accuracy.

Of the four cross-validation methods evaluated, RK emerged as the
most accurate and reliable across all scenarios. This highlights its po-
tential to fill data gaps in crop statistics by combining spatial and tem-
poral variability. While TS trailed closely behind RK in terms of
accuracy, it did not surpass it. However, there were instances, such as in
maize yield predictions, where LYO sometimes outperformed TS.
Generally, when accuracy is the most important factor, TS is the
preferred method for predicting production, whereas LYO excels at
predicting yield. With our model settings, LDO predictions exhibited
weak performance for production forecasting, failing to predict pro-
duction for Somalia, while showing only moderate success in yield
predictions.

We observed that certain time-invariant features, such as livelihood
zone, soil properties, and proportion of cropland area, effectively ac-
count for crop data characteristics. Indeed, the most dominant features
were identified as non-EO products, including either a time-invariant
feature or time itself (Fig. 2). This highlights the considerable impacts
of arable land quality and agroecological information on crop produc-
tion modeling, overshadowing some of the agroclimatic EO predictors.
Among the EO predictors, NDVI and temperature-based variables are
prominent, with precipitation behind those variables. This insight is
valuable when applying our methods to regions with similar agro-
climatic environments. For such regions, PD model emerges as a

Fig. 4. Comparative accuracy in predictions based on various cross-validation methods and input data types for (a) maize production and (b) maize yield of Burkina
Faso, and (c) maize production and (d) maize yield of Somalia. The boxplots depict the annual distribution of R-squared values.
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potentially superior choice. Also, our results indicate that time-invariant
data can offer more than just capturing spatial variability. It can also
enhance the temporal adaptability of the model to the target district,
such as high producing regions in Somalia. When using all data points,
including time-invariant features improves prediction accuracy by 0.05
to 0.41 in R-squared and 29 % to 2 % in Mean Absolute Percentage Error
values compared to using only time-varying EO features.

In Burkina Faso, both production and yield predictions displayed
stable operational accuracy across different training periods. This sug-
gests that even a concise training duration can adequately capture
spatial and temporal variability, given the consistency of crop statistics
over time in Burkina Faso. In contrast, for Somalia, the PD model
exhibited a stronger ability to handle crop production outliers compared
to the TDmodel, with accuracy generally increasing with longer training
periods. In general, we did not identify a consistent trend linking ac-
curacy to the length of data. This highlights the prevalent impact of
inherent crop characteristics and underscores the necessity for con-
ducting experiments that are tailored to individual countries.

Depending on the type of missing data—whether it be an entire
district or specific years—tailored strategies and methods are required
for filling in the gaps. Our findings indicate that filling in sporadic gaps
in crop statistics is feasible, allowing the development of a PDmodel that
incorporates both spatial and temporal information. While our method
struggles to predict complete records for new districts, performance may
be improved by clustering districts based on their agro-ecological
characteristics before developing a PD model.

Although our findings demonstrated that PD approach has potential

to improve operational crop productivity forecasting in terms of pre-
diction accuracy at specific condition, we also demonstrated that those
improvements can vary with different experimental setting (e.g., cross
validation and input features) and characteristics of crop statistics (e.g.,
outliers). Furthermore, operational applicability in SSA might need
throughout examination on how these improvement affects to accuracy
of lower production regions that food insecure are prominent or major
producing regions that can affect provincial crop price shock and food
supply shortage. Since the performance of TD model is also comparable
or superior to PD model, additional examination is required to decide
how to consolidate those approaches. Blending methods that combine
the advantages of both PD and TD, such as spatially integrated pre-
dictions, have the potential to improve the overall accuracy of pre-
dictions. This approach becomes complex when attempting to identify
the precise criteria that make PD or TD model more suitable for a
particular region, and these criteria may vary based on model configu-
rations, training durations, or the quality of the available crop data.
Therefore, all decisions should be based on a thorough evaluation of the
model’s spatiotemporal capabilities.

While our study offers valuable insights, we also acknowledge
several limitations to ensure a comprehensive understanding of our
findings. First, the selection of the prediction model is crucial; if other
machine learning or traditional time-series models are employed, our
detailed findings may change. To simplify the analysis of in-season
predictability, we utilized a uniform national crop calendar. However,
this may overlook regional (sub-national) differences in crop cycles,
leading to potential discrepancies in the seasonal alignment of EO data.

Fig. 6. Comparative operational accuracy between PD (LYO-based) and TD (TS-based) model predictions with a 20-year training duration for (a) maize production
and (b) maize yield of Burkina Faso, and (c) maize production and (d) maize yield of Somalia. Positive values indicate superior performance by PD model relative to
TD model. The dotted regions are the primary maize-producing regions, accounting for 70 % of each country’s total production.

Fig. 5. Comparative operational accuracy (R-squared) between PD (LYO-based) and TD (TS-based) model predictions with varying training periods for (a) maize
production and (b) maize yield of Burkina Faso, and (c) maize production and (d) maize yield of Somalia.
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This may not have a significant impact on Burkina Faso and Somalia, but
it may be crucial for other countries. The prediction performances varied
between Burkina Faso and Somalia. It’s evident that each country, or
even regions within a country, might possess distinct economic, envi-
ronmental, and geographical attributes that influence agricultural pro-
ductivity. In fact, many studies, including ours, utilize extensive EO data
combined with machine learning for large-scale crop forecasting.
However, important agro-economic factors, such as market dynamics
and fertilizer trends, which play pivotal roles in SSA’s crop production
(Bonilla-Cedrez et al., 2021), are often overlooked. Burkina Faso is an
example of how improvements in agricultural practices and resources
can sometimes outweigh the effects of environmental and climatic fac-
tors. In addition, the accuracy and consistency of subnational data
frequently vary, particularly in the context of SSA.

Potential improvements and new developments of AI and EO data
can enhance their applications to agricultural forecasting and modeling
(Nakalembe and Kerner, 2023). Specifically, with the proliferation of
remote sensing products and the inherent capacity of PD model to
assimilate more spatial data, there may be untapped potential in PD
versus TD. The challenge lies in identifying the most efficient spatial
characteristics to improve modeling temporal variations. Therefore,
further research into the relationships between EO data and spatial
agroeconomic or agroecological data is necessary. Additionally, these
time-invariant agroeconomic and agroeconomic information may
exhibit pseudo-time-invariant characteristics over extended periods. In
light of this, further analysis is warranted to examine how these char-
acteristics influence model settings and accuracy. Lastly, incorporating
seasonal forecast information to forecast crop yields might enhance
predictability and provide longer prediction lead times (Harrison et al.,
2022; Jin et al., 2022; Shukla et al., 2021)

6. Conclusions

In this study, we evaluated combinations of different modeling and
cross-validation approaches used for operational forecasting of subna-
tional crop production and yield predictions. By leveraging a consistent
machine learning framework and integrating EO datasets, we explored
diverse sampling methods and training durations to predict maize pro-
ductions and yields in Burkina Faso and Somalia. Our central aims were
to discern the value of time-invariant features within the context of a PD
model versus a TD model and to evaluate the PD model’s potential to
improve operational forecasting. Our principal findings are:

• The TD model generally performed well in predicting both crop
production and yield, while the PD model offered comparable yield
predictions, benefiting from time-invariant features. Time-invariant
features, notably livelihood zones, soil properties, and cropland
area, proved valuable in capturing spatial characteristics of crop
data. These features enhanced modeling of temporal variability,
boosting the R-squared to 0.41 and reducing the MAPE to 29 %.

• In Burkina Faso, a short training period sufficed to model both spatial
and temporal variability due to the consistent nature of crop data
over time. Meanwhile, in Somalia, the PD model demonstrated
resilience against crop production outliers. Particularly in major
producing regions, its efficacy heightened with prolonged training
periods.

• Filling in missing gaps in crop statistics is feasible using the PD
model. Challenges persist in predicting entire records for new dis-
tricts, but clustering based on agro-ecological characteristics may
offer a solution.

Our research demonstrates how EO data and machine learning can
be combined to improve model accuracies and how spatial and temporal
information can be integrated during model development. A tailored
approach that considers the unique characteristics of each region can
help account for spatial and temporal variability to increase model

accuracies.
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