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A B S T R A C T   

Drought is one of the key drivers of food insecurity in Afghanistan, which is among the most food insecure countries in the world. In this study, we build on previous 
research and seek to answer the central question: “What is the influence of El Niño-Southern Oscillation (ENSO) on drought outlooks and agricultural yield outcome in 
Afghanistan, and how do these influences vary spatially?” We do so by utilizing multiple indicators of droughts and available wheat yield reports. We find a clear 
distinction in the probability of drought (defined as being in the lower tercile) in Afghanistan during La Niña compared to El Niño events since 1981. The probability 
of drought in Afghanistan increased during La Niña, particularly in the North, Northeast, and West regions. La Niña events are related to an increase in the probability 
of snow drought, particularly in parts of the Amu Darya basin. It is found that relative to El Niño events, snow water equivalent [total runoff] during La Niña events 
January–March (March–July total runoff) decreases between 9% and 30% (28%–42%) for the five major basins in the country. The probability of agricultural 
drought during La Niña events is found to be higher than 70% in the rainfed and irrigated areas of the Northeast, North, and West regions. This result is at least partly 
supported by reported wheat yield composites related to La Niña events that tend to be lower than for El Niño events across all regions in the case of rainfed wheat 
(statistically significant in Northeast, West, and South regions) and in some cases for irrigated wheat. The results of this study have direct implications for improving 
early warning of worsening food insecurity in Afghanistan during La Niña events, given that we now have long-lead and skillful forecasts of ENSO up to 18–24 
months in advance, which could potentially be used to provide earlier warning of worsening food insecurity in Afghanistan   

1. Introduction 

Irrigated and rainfed agriculture is central to the economy and food 
security of Afghanistan and a primary source of livelihood, food and 
income in rural areas. Water supply for irrigation is mainly supported by 
rivers and springs, driven by snowmelt (Rout 2008) with increasing 
contribution of groundwater in recent years, particularly in the Helmand 
basin (Nazemosadat et al., 2023). Winter precipitation, which typically 
spans from October to March (Fig. S1), is critical for snowfed water 
resources that support irrigated agriculture. Spring precipitation, which 
typically occurs between March to May (Fig. S1), supports rainfed 
agriculture. Fig. 1 shows the mean production of irrigated and rainfed 

wheat in different sub-regions indicating that irrigated wheat makes up 
a larger portion of total wheat production in the country. Primary irri
gated wheat production regions are the Northeast, North, East, South, 
and Southwest sub-regions, and primary rainfed wheat production re
gions are Northeast, North, and West sub-regions (Fig. 1) 

Despite agriculture being the backbone of the economy, Afghanistan 
is still one of the most food insecure countries in the world. As per the 
2022 Global Hunger Index (GHI), Afghanistan, as of October 2022, has a 
GHI of 29.9, which falls in the “serious” category (GHI 2022), and ranks 
amongst the lowest (109th) out of the 121 countries for which 2022 GHI 
scores were calculated. The GHI is a collective measure of several 
malnutrition related indicators such as Undernourishment, Child 
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stunting, Child wasting, and Child mortality (Wiesmann et al., 2015) 
In addition to the longer-term context above, presently, the country 

is facing an unprecedented food insecurity related humanitarian crisis. 
Based on 2023 estimates, about two-thirds of the population will need 
urgent humanitarian assistance (OCHA 2023). Drought is one of the key 
drivers (FEWS NET 2023; IPC 2022) of this unprecedented humanitarian 
need with other important drivers being long-term climate change 
(Sengupta 2021; WFP and UNEP, 2018), conflict, and the economic 
crisis (OCHA 2023). Afghanistan has experienced several severe 
droughts in the past, including multiyear drought events (Chen et al., 
2023; Tayfur and Alami 2022; Qutbudin et al., 2019; Alami et al., 2017; 
Dost et al., 2023; Bhattacharyya et al., 2004; Dost and Kasiviswanathan 
2023). Qutbudin et al. (2019) used Global Precipitation Climatology 
Center (GPCC) gridded dataset based Standardized Precipitation and 
Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010) to 
examine the changes in drought in Afghanistan during growing seasons 
for wheat, corn and rice and found increases in drought severity and 
frequency in Afghanistan over 1901–2010 period. More recently, Chen 
et al. (2023) reported similar findings but using station data based SPEI, 
to analyze droughts in Afghanistan during the last 40 years. Dost and 
Kasiviswanathan (2023) used monthly precipitation data from 23 sta
tions to calculate and examine the trend in Standardized Precipitation 
Index (SPI) and found negative trends in the northwest regions of the 
country and positive trends increased in central and southeast regions. 
Collectively these studies highlight the peculiar long-term drought 
vulnerability of Afghanistan. This vulnerability has been emphasized by 
the recent sequential drought events over 2020 to 2023, that coincided 
with a multiyear La Niña event that started in July–September 2020 and 

persisted until early 2023. The coincidence of multiyear La Niña with 
the sequential droughts highlights the importance of investigating the 
longer-term relationship between La Niña and droughts, and agricul
tural outcome in Afghanistan, with the overarching goal of supporting 
early warning of such events and their impacts in the future 

ENSO influences the climate of Central Southwest Asia (which in
cludes Afghanistan) via stationary Rossby waves forced by ENSO-related 
tropical convection (Alizadeh 2024; Alizadeh-Choobari 2017; Aliza
deh-Choobari and Adibi, 2019; Barlow et al., 2002, 2021; Hoell et al. 
2015a, 2015b, 2017, 2018, 2020; Huang and Stevenson 2023; Lenssen 
et al., 2020; Mariotti 2007; Phillips et al., 1998; Syed et al., 2006). For 
example, Mariotti (2007) finds ENSO’s influence on precipitation in this 
region to be strong throughout the rainy season, and highlights the role 
of a southwesterly (northeasterly) circulation pattern during El Niño (La 
Niña) that enhances (dampens) moisture input into this region (Hoell 
et al., 2012, 2015a). However, like in the case of Mariotti (2007), 
ENSO’s influence on Afghanistan’s climate has been primarily investi
gated in terms of its impacts on cold season precipitation, frequently at a 
seasonal scale (often November to April) and at a monthly scale in at 
least one study (Hoell et al., 2015b). These studies focused on changes in 
seasonal precipitation in the region at a broad scale (Central Asia or 
Southwest Asia), using coarse scale precipitation datasets with scarce in 
situ data inputs (Hoell et al., 2015b, 2017; McNally et al. 2022; Syed 
et al., 2006). To our knowledge, in only two past studies, the impact of 
ENSO on seasonal climate in the region was examined using hydrologic 
variables other than precipitation. For example, Hoell et al. (2015b) 
demonstrated how the composites of dry and wet winter seasons, based 
on seasonal precipitation, broadly translated into changes in snow water 

Fig. 1. Boundaries of the five of the major basins in Afghanistan (top left), boundaries of the sub-regions in Afghanistan (top right), mean irrigated wheat production 
aggregated over the sub-regions (bottom left), and mean rainfed wheat production aggregated over the sub-regions (bottom right) 

S. Shukla et al.                                                                                                                                                                                                                                  



Weather and Climate Extremes 45 (2024) 100697

3

equivalent, soil moisture, evapotranspiration and runoff in the region of 
southwest Asia. Hoell et al. (2020) examined the precursors and pre
dictability of agricultural drought in the Amu Darya basin, using the 
Community Earth System Model simulations 

Past research has undoubtedly established a clear link between ENSO 
and winter seasonal precipitation in Afghanistan, albeit as part of 
broader regional studies. However, we still lack the understanding of (a) 
the robustness (or lack thereof) of the relationship between ENSO events 
(La Niña versus El Niño) and snow drought, hydrological drought, and 
agricultural drought, and the extent to which both events impact irri
gated and rainfed agricultural yield outlook and (b) the spatial vari
ability in the probability of drought and severity of impacts. 
Understanding of ENSO’s influence on snow is critical given its impor
tance in Afghanistan’s water supply (Muhammad et al., 2017), which is 
the main source of water for irrigated agriculture. By some estimates, 
86% of the irrigation area is supported by rivers and springs (Rout 
2008). Moreover, rainfed agriculture, a smaller contributor to overall 
agricultural production (Fig. 1), is still critical for local food availability 
and agricultural labor opportunities (Aliyar et al., 2022) and is largely 
dependent on the spring rains. Past studies have not specifically exam
ined the impacts of ENSO on rainfed agriculture across the country, 
noting that rainfed agriculture, like irrigated agriculture, is distributed 
across the country. Which parts of rainfed and irrigated agriculture areas 
are most vulnerable to ENSO-related drought events is not clearly un
derstood. The understanding of the influence of ENSO on drought in 
each of those areas is also critical to support any adaptation measures 
(Aliyar et al., 2022) during future ENSO events 

Finally, the agro-climatological monitoring to support food insecu
rity early warning is done by agencies such as United States Agency for 
International Development’s Famine Early Warning Systems Network 
(FEWS NET) (Funk et al. 2019) and the Group on Earth Observations 
Global Agricultural Monitoring Initiative (GEOGLAM) (Becker-Reshef 
et al. 2010; 2020). The monitoring is conducted by convergence of ev
idence, relying on several earth observation datasets (such as rainfall, 
soil moisture, normalized difference vegetation index (NDVI), and 
reservoir level) to understand the spatial variability in drought devel
opment and progression and its severity. The knowledge provided by 
past research on the variability of seasonal precipitation with ENSO 
events is not sufficient to meet the needs of the early warning agencies 
that tend to rely on several indicators (as listed above) in addition to 
precipitation 

Therefore, we build upon past research on the effect of the ENSO on 
Southwest Asia and Central Asia, including Afghanistan (Aliza
deh-Choobari 2017; Barlow et al., 2002, 2021; Hoell et al., 2015b, 2017, 
2018, 2020; Mariotti 2007; Syed et al., 2006) and specifically seek to 
answer the central question: “What is the influence of ENSO on the drought 
outlook and agricultural outcome in Afghanistan and how does that influence 
vary spatially?” We conduct a comprehensive and detailed examination 
of the relationship between ENSO and drought outlooks in Afghanistan 
to address the existing critical gaps in our understanding. We do so by 
relying on several satellite and simulated datasets (Table 1) that provide 
a better understanding of the ENSO related diversity in the probability of 
meteorological, snow, hydrological, and agricultural droughts and the 
spatial variability in ENSO influence on agricultural outcomes, repre
sented by agropastoral livelihood zones and wheat reports. This study’s 
overarching goal is to advance the understanding of ENSO’s influence on 
drought outlooks in Afghanistan to strengthen early warning of drought 
and associated acute food insecurity in Afghanistan, which as high
lighted above, is one of the most food insecure regions globally. In the 
next sections, we provide a brief overview of the earth observational 
datasets used in this study (Table 1), the results of ENSO impact on 
drought analysis, and the implications of the results in improving early 
warning of drought impacts related to future ENSO events  

2. Data 

To investigate the relationship of ENSO events with the probability 
of drought and agricultural outcomes (measured by reported crop yield) 
in Afghanistan, this study relies on several datasets that cover varying 
record lengths, some extending to 1981 and some others to ~2000s. 
Table 1 lists the drought indicators, corresponding datasets and down
load links. We use the full record of all datasets to test the robustness of 
the ENSO relationship with the probability of drought and impacts on 
agricultural outcome throughout the time period 

1.1. Standardized Precipitation index 

We use the Standardized Precipitation Index (SPI) (McKee et al., 
1993) to analyze the influence of ENSO events on meteorological 
droughts (Table 1). SPI is widely used to estimate drought severity, 
duration, and frequency based on precipitation data, and SPI has been 
previously used in past studies focused on analyzing drought conditions 
in Afghanistan (Alami et al., 2017; Dost et al., 2023; Tayfur and Alami 
2022). The SPI transforms the precipitation record into a standardized 
value that represents the number of standard deviations by which the 
observed precipitation value deviates from the mean. Positive values of 
SPI indicate wetter than average conditions, while negative values 
indicate drier than average conditions. SPI values below − 0.44 are 
considered to be in the lower tercile with an associated climatological 
probability of occurrence of 33%. In this analysis, we calculate SPI-3 (i. 
e., SPI calculated over a 3-month season, hereafter referred as SPI) for 
October to December, December to February, and March to May sea
sons, which mark seasons important for planting decisions for winter 
wheat, snow accumulation for irrigated wheat, and rainfed farming of 
spring wheat, respectively. SPI was calculated over 1981–2022 
following the methods described in (Husak et al., 2007) at 0.05-degree 

Table 1 
Typology of droughts and agricultural outcome, and corresponding datasets, 
analyzed in this study.  

Meteorological 
Drought 

Standardized Precipitation Index (SPI) based on:  
(1) CHIRPS (https://data.chc.ucsb.edu/products/CHIRPS- 

2.0/global_3-monthly_EWX/zscore/)  
(2) GPCC (https://psl.noaa.gov/data/gridded/data.gpcc. 

html  
(3) APHRODITE (https://www.chikyu.ac.jp/precip/english 

/products.html)  
(4) ERA5-Land Precipitation (https://cds.climate.coper 

nicus.eu/cdsapp#!/dataset/reanalysis-era5-land-month 
ly-means?tab=form)  

(5) PERSIANN–CCS–CDR (https://chrsdata.eng.uci.edu/) 
Standardized Precipitation and Evapotranspiration Index 
(SPEI) based on:  
(1) CHIRPS (https://data.chc.ucsb.edu/products/CHIR 

PS-2.0/global_monthly/netcdf/)  
(2) Hobbins reference evapotranspiration dataset (https:// 

data.chc.ucsb.edu/products/Hobbins_RefET/ETos_p05 
_dekad_global/tifs/) 

SPEI data for Afghanistan also available via https://data.chc. 
ucsb.edu/people/husak/forShrad/ 

Snow Drought Snow Water Equivalent from:  
(1) FEWS NET Land Data Assimilation System (FLDAS) 

(https://disc.gsfc.nasa.gov/datasets?keywords=FLDAS)  
(2) ERA5-Land (https://cds.climate.copernicus. 

eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-me 
ans?tab=form) 

Hydrological 
Drought  

(1) Runoff data from FEWS NET Land Data Assimilation 
System (FLDAS) (https://disc.gsfc.nasa.gov/datasets?ke 
ywords=FLDAS)  

(2) Water level data (https://dahiti.dgfi.tum.de/en/3779/ 
water-level-altimetry/) 

Agricultural Drought  (1) Evaporative Stress Index (https://climateserv.servirgl 
obal.net/)  

(2) NDVI (https://earlywarning.usgs.gov/fews/datado 
wnloads/EastAfrica/NDVIeMODIS) 

Agricultural Yield 
Report 

FEWS NET Data Explorer (https://fdw.fews.net/data-expl 
orer/crop)  
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spatial resolution using the Climate Hazards Infrared Precipitation with 
Stations (CHIRPS) dataset (Funk et al. 2015a, Funk et al., 2015b). 
CHIRPS is a quasi-global rainfall dataset that combines satellite-derived, 
infrared, temperature-based precipitation estimates with in situ station 
data. CHIRPS is a widely used dataset that has been previously used in 
studies focusing on central southwest Asia and Afghanistan (McNally 
et al. 2022; Nabizada et al., 2022) 

1.2. Standardized Precipitation Evapotranspiration Index 

In addition to SPI, we also examined the influence of ENSO on cli
matic water balance and associated drought, using the Standardized 
Precipitation Evapotranspiration Index (SPEI) dataset (Vicente-Serrano 
et al., 2010) (Table 1). The SPEI has been used for analyzing drought 
characteristics and its spatiotemporal variability in Afghanistan in 
multiple past studies (Chen et al., 2023; Qutbudin et al., 2019). The 
method of calculation of SPEI is largely similar to SPI but it is based on 
the difference between precipitation and potential evapotranspiration. 
We follow the method described in Vicente-Serrano et al. (2010) to 
calculate SPEI. CHIRPS was used as the precipitation dataset, along with 
potential evapotranspiration (Hobbins et al., 2016) derived using 
MERRA-2 based atmospheric forcings (Gelaro and Coauthors, 2017). 
Hobbins et al. (2023) describes in detail the methodology of generating 
potential evapotranspiration using the MERRA-2 atmospheric forcings. 
The spatial resolution of SPEI data is 0.05◦, and the dataset goes back to 
1981. We examined SPEI during the October–December to March–May 
seasons covering the critical parts of the growing seasons for both irri
gated and rainfed agriculture 

The application of SPEI for this study allows for the examination of 
any temperature related impacts on the climate water balance beyond 
precipitation related impacts depicted by SPI. Given the temperature 
trends in Afghanistan, its influence on the climate water balance as 
indicated by long-term changes in SPEI was also highlighted in the 
World Food Programme (WFP) and United Nations Environmental 
Programme (UNEP) report examining the influence of climate change in 
food security in Afghanistan (WFPand UNEP, 2018). SPEI is also 
routinely used as an indicator of agriculture drought outcome by the 
FEWS NET in Afghanistan (personal communication with FEWS NET’s 
regional scientists who focus on Afghanistan, 2023; 2024) 

1.3. FEWS NET Land Data Assimilation System based hydrologic 
simulations 

In addition to meteorological drought indicators for snow dominated 
regions in Afghanistan using indicators that account for snow accumu
lation and melt is important (Muhammad et al., 2017). However, given 
the lack of in situ reports of snow and snowmelt driven runoff, we use 
FEWS NET Land Data Assimilation System (FLDAS) (McNally et al. 
2017) simulated hydrologic variables to analyze the relationship be
tween ENSO on snow and hydrologic drought (Table 1). The FLDAS 
simulated snow and runoff products are routinely used for monitoring 
drought conditions in Afghanistan (Becker-Reshef et al. 2020; McNally 
et al. 2022). The FLDAS simulations used in this study are driven by the 
CHIRPS precipitation dataset (Funk et al., 2015a) and temperature, 
wind, and radiation forcings from MERRA-2 (Gelaro and Coauthors, 
2017) reanalysis (which is also used to generate potential evapotrans
piration (PET) dataset for SPEI calculation, section 2.2). The simulation 
is at a gridded spatial resolution of 0.1◦ (or ~10 km), available in near 
real-time (about 3 weeks after the end of the month) and extends to 
1981, making it an important dataset for hydrologic monitoring in 
Afghanistan (McNally et al. 2022). The simulations are available at a 
daily scale, but for this analysis we aggregated them to calculate mean 
seasonal snow water equivalent (SWE) over the January to March sea
son, as an indicator of snow drought, and total water year (WY) seasonal 
runoff (sum of daily surface and subsurface runoff simulation over 
October to September), as an indicator of hydrologic drought. We then 

convert the seasonal values to standardized anomalies and examine the 
probability of achieving below normal (<-0.44) values during La Niña 
versus El Niño years. Additionally, to highlight the changes in basin 
aggregated absolute values of seasonal SWE (total WY runoff) we 
calculated the volume of both quantities by multiplying the mean depth 
values by the grid cell area, and then we calculated the average (sum) 
across major basins in Afghanistan (Fig. 1) 

1.4. Evaporative stress index 

We also use remotely sensed Evaporative Stress Index (ESI) 
(Anderson et al., 2011) (Table 1), which is typically considered as an 
indicator of agricultural drought, as an independent dataset to examine 
the influence of ENSO on moisture available for crop growth. The ESI 
has been used previously used for agricultural drought monitoring in 
South Asian countries including Afghanistan and described as a superior 
indicator of drought with greater sensitivity, relative to other vegetation 
condition indicators such as vegetation health index (VHI), enhanced 
vegetation index (EVI), and standardized anomaly index (SAI) (Shah
zaman and Coauthors, 2021). The ESI spans back to the 2000s and is 
widely used for monitoring and early warning of rapidly developing 
“flash drought” events (Otkin et al., 2018) and agricultural droughts 
(Yang and Coauthors, 2018). The ESI is based on remotely sensed land 
surface temperature (LST). The LST measurements are used to estimate 
water loss due to evapotranspiration and are then compared to the 
evapotranspiration (ET) in the case of an adequate supply of water. 
Healthy vegetation with adequate levels of ET warms at a much slower 
rate than vegetation experiencing a lack of water supply resulting in 
reduced ET. Hence, based on variations in LST at a given time relative to 
its average value the ESI indicates how the current rate of ET compares 
to normal. Negative ESI values indicate vegetation that is moisture 
stressed and vice versa. This product is available at 5-km spatial reso
lution and at near real-time (Table 1). Two versions of ESI products vary 
in the cumulative duration over which they track the moisture stress. We 
use the ESI-12 week product that monitors the ET stress over 12 weeks, 
about a 3-month season. The application of ESI in this analysis increases 
the number of independent datasets because SPI, SPEI, and FLDAS all 
rely on CHIRPS precipitation and makes this result directly relevant for 
early warning agencies that use ESI for drought monitoring (such as 
GEOGLAM’s Crop Monitor for Early Warning). The ESI data were 
downloaded from SERVIR’s ClimateSERV (https://climateserv.servirgl 
obal.net/) 

1.5. Reservoir water level data 

We use satellite altimetry based estimates of the water level at the 
Kajaki reservoir provided by the Database for Hydrological Time Series 
of Inland Waters (DAHITI) project (Schwatke et al., 2015) (Table 1). The 
Kajaki reservoir is one of the two main reservoirs in heavily irrigated 
Helmand province (Goes et al., 2016) in southern Afghanistan. The 
long-term record (going back to 1991) of water level only exists for the 
Kajaki reservoir, with the data for other reservoirs in Afghanistan being 
limited to generally 2016 and in a few cases to 2008. The water level 
data is based on inland water body monitoring from satellite altimetry 
by application outlier rejection and a Kalman filter approach on 
ensemble of cross-calibrated altimeter data from several sources such as 
Envisat, ERS-2, Jason-1, Jason-2, TOPEX/Poseidon, and SARAL/AltiKa, 
including their uncertainties (Schwatke et al., 2015). It is important to 
note that reservoir water level can be affected by non-climatic man
agement decisions, nonetheless this dataset is routinely used for moni
toring water availability in Afghanistan by FEWS NET. The water level 
data were manually downloaded using this link: https://dahiti.dgfi.tum. 
de/en/3779/water-level-altimetry/ 
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1.6. Normalized difference vegetation index 

We use the Normalized Difference Vegetation Index (NDVI) which is 
an indicator of vegetation health and productivity to examine the in
fluence of ENSO on agricultural drought (Table 1). The NDVI is a 
commonly used metric for vegetation health, and is calculated by 
comparing the reflectance of near-infrared and visible red light. Healthy 
vegetation absorbs more near-infrared light and reflects more visible red 
light, resulting in a higher NDVI value. The spatial resolution of this 
dataset is 250 m. For this analysis, we use the Expedited Moderate 
Resolution Imaging Spectroradiometer (eMODIS) NDVI (Jenkerson 
et al., 2010), which goes back to 2002. Until recently, MODIS NDVI was 
a widely used product for agricultural drought and crop yield/pro
duction monitoring (Brown and de Beurs 2008; Funk and Budde 2009; 
Groten 1993; Shukla et al., 2021) and forecasting (Lee and Coauthors, 
2022) to monitor vegetation conditions in Afghanistan and beyond. 
Since late 2022 this product has been replaced by Visible Infrared 
Imager Radiometer Suite (VIIRS) NDVI (Skakun et al., 2018), but, at the 
time of this analysis, that dataset only goes back to 2012 making it 
unsuitable for this analysis, so we relied on eMODIS NDVI (hereafter 
referred to as NDVI). The NDVI values are available on a dekadal basis, 
which we convert to monthly by taking the mean of the dekadal NDVI 
values. We then convert the monthly values of NDVI to standardized 
anomalies using the climatology over 2003 to 2022. The eMODIS NDVI 
data were downloaded from the U.S. Geological Survey (USGS) FEWS 
NET Data Portal (https://earlywarning.usgs.gov/fews). 

1.7. Wheat reports 

Finally, we also use available reports of irrigated and rainfed wheat 
production and harvest area over the 2002–2022 period (Table 1). The 
data for the 2002–2019 period are available at province level (Fig. S4) 
and is sourced from the Afghanistan Ministry of Agriculture, Irrigation 
and Livestock (MAIL). The data for 2012 to 2023 is sourced from the 
United States Department of Agriculture’s Foreign Agricultural Service’s 
Production Supply and Distribution (USDA PSD). This dataset is only 
available at national scale and for total (irrigated + rainfed) wheat 
production and harvested area. We performed some basic quality con
trols on the MAIL data, correcting for typos and miscalculations. We also 
converted the MAIL data to sub-regional yield data (Fig. S4) by summing 
the production values of all the provinces within a given sub-region (as 
shown in Fig. 1) and dividing by the total sum of the harvested area of 
those provinces. The primary reason for aggregating the yield data from 
province to sub-regional level was to attempt to reduce the influence of 
uncertainties in the data at province scale. Fig. 1 shows the mean irri
gated and rainfed wheat production in each of the sub-regions during 
the 2002–2019 period based on the data from MAIL 

As can be seen in Fig. S4, the sub-regional yield values are lower in 
the initial part of the record versus later part of the record. To account 
for this non-stationarity in the yield data we detrend the data by con
verting yield data into anomalies based on the 5-year moving average 
centered on the target year. For the first two and the last two years of the 
record (which would not have a sufficient record in a 5-year window 
centered on those years) we use the closest 5 years including the target 
year to calculate the 5-year moving average 

2. Methods 

This section describes the methods used for identifying ENSO events, 
for calculating probability of below normal events, and for statistical 
significance testing 

2.1. El Niño-southern oscillation events 

In this study, we follow Climate Prediction Center’s (CPC) classifi
cation of ENSO events which is based on the Oceanic Niño Index (ONI) 

(Huang and Coauthors, 2017). Per this classification, since 1981, a total 
13 El Niño events and 15 La Niña events are included in this analysis. El 
Niño events include 1982/1983, 1986/1987, 1987/1988, 1991/1992, 
1994/1995, 1997/1998, 2002/2003, 2004/2005, 2006/2007, 
2009/2010, 2014/2015, 2015/2016, 2018/2019, and La Niña events 
include 1983/1984, 1984/1985, 1988/1989, 1995/1996, 1998/1999, 
1999/2000, 2000/2001, 2005/2006, 2007/2008, 2008/2009, 
2010/2011, 2011/2012, 2017/2018, 2020/2021, 2021/2022. In the 
case of NDVI, ESI, and wheat reports, which go back to 2002/2003, El 
Niño and La Niña events are reduced to 7 and 8 events, respectively 

2.2. Probability of below normal and statistical significance testing 

We converted each of the drought indicators into standardized 
anomalies as described in section 2 using each of the datasets’ full 
climatology. We then counted the number of times standardized 
anomalies for any given indicator, season, and pixel were below − 0.44, 
which is the threshold of the lower tercile category, and divided that by 
the total number of events equivalent to the length of the record (e.g., 42 
years for the datasets spanning over 1981–2022). Subsequently, we 
calculated the statistical significance of the probability of below normal 
events following the method used by Mason and Goddard (2001). The 
null hypothesis (H0) is that the occurrence of below-normal events is 
solely attributable to random chance, considering the total number of 
observed events and the number of El Niño or La Niña events and the 
alternative hypothesis (Ha) is that the observed frequency of 
below-normal events is significantly different from what would be ex
pected by chance alone. Finally, for the El Niño or La Niña composites of 
wheat yield, we conducted a Wilcoxon Rank Sum Test (Wilks 2011) 
given the null hypothesis that both of those composites belong to the 
same population 

3. Results 

Here we present the results of our analysis investigating the influence 
of ENSO on the probability of drought outlook and agricultural outcome. 
Given the lack of (often nonexistent) observed record of water avail
ability and agriculture statistics, we rely on several datasets ranging 
from modeled to remote sensing based datasets. Rather than focusing on 
any linear relationship between ENSO and the above-mentioned in
dicators, we focus on examining how the likelihood of drought, in this 
case, defined by a below normal tercile event, changes during the La 
Niña events relative to El Niño events. Our focus on this question is due 
to its important implications for food insecurity early warning in 
Afghanistan 

3.1. ENSO based meteorological drought outlook 

We start the examination of ENSO influence on meteorological 
drought by focusing on the probability of the SPI being in the lower 
tercile during early-winter (October–December), mid-winter (Decem
ber–February), and spring (March–May) season in La Niña versus El 
Niño years (Fig. 2). The chances of receiving below normal SPI greatly 
increases during La Niña years versus El Niño years. In general, over 
much of the country, during early-winter, the probability of SPI being 
below normal is >50% during La Niña years, with the main exception 
being parts of the Southwest region. The probability is statistically sig
nificant mainly in parts of West, North, and Northeast regions. When 
focusing on mid-winter precipitation, the highest probability (reaching 
above 80% in some cases) with statistical significance, is seen in North, 
West, and West Central regions during La Niña years. In the case of 
spring season, which is critical for rainfed agriculture, the statistical 
significance of the probability of below normal during La Niña, is limited 
to parts of the West 

Finally, the probability of meteorological drought during El Niño 
events is generally below climatological probability (33%) almost across 
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the country (Fig. 2). For early warning purposes, this is a key piece of 
information, as at least climatologically this indicates a clear increase in 
the chances of meteorological drought development during La Niña 
versus El Niño years 

We also examine the probability of meteorological drought as per 
SPEI (Fig. 3). In general, we find similar patterns in the increased 
probability of drought in the North, West, and Northeast regions, as we 
did using SPI. Similar to those results, the probability of SPEI drought 
during El Niño years is also generally less than the climatological 
probability. The one notable difference between the SPI and SPEI based 
probability of drought is the statistical significance of the probability of 
spring season SPEI drought being over a much larger region of the North 
and the West sub-regions. As shown in Fig. 1, the North and West sub- 
regions are among the main rainfed wheat producers in the country. 
The statistical significance of SPEI drought (versus SPI drought) may be 
due to La Niña’s influence on evaporative demand in this season beyond 
its influence on precipitation alone 

3.2. ENSO based snow drought outlook 

Fig. 4 shows the probability of snow drought during La Niña versus El 
Niño years during January–March (JFM) which generally marks the 
peak of the snow accumulation period (Fig. S1). The probability of SWE 
being below normal is generally higher than 50% across the region with 
the highest probability in parts of the Amu Darya basin and nearby re
gions. The probability of below normal JFM SWE is also statistically 
significant in the northern parts of the Amu Darya basin 

To further understand the impact of La Niña on SWE, in Fig. 5 we 
show the range of SWE volume (in cubic meters) for each of the five 
major basins, during La Niña versus El Niño years, since 1981. Across the 
basins, in general, SWE during JFM seasons has been lower during the La 
Niña years versus El Niño years. Although as the composites indicate 

there have been exceptions to this general pattern 
To better appreciate the extent of the impact of La Niña on SWE we 

also calculated the difference in the median of the SWE volume com
posites during La Niña versus El Niño years (Fig. 5). Here, the basins are 
ordered based on the proportion of the Afghanistan water supply 
attributed to a given basin, with the Amu Darya [Northern] basin being 
the highest [lowest] contributor to water supply as per Rout (2008). This 
analysis indicates that on average La Niña has resulted in about 30% 
reduction in SWE volume in the Amu Darya basin with the estimates for 
other basins ranging from 9 to 35% reduction. In the absence of 
long-term snow observations, this modeled estimate at least provides a 
sense of the magnitude of the loss in SWE attributable to La Niña years 

Finally, Fig. 5 also shows the upper and lower tercile of the SWE 
(over 1981–2022) for each of the basins. In general, the median SWE 
during La Niña events tends to be closer to the lower tercile, and the 
median SWE during El Niño events tends to be closer to the upper tercile 
values 

3.3. ENSO based hydrologic drought outlook 

The impact of La Niña related rainfall and snow drought on hydro
logic drought are further highlighted in Figs. 6–8. This analysis relies on 
the gridded modeled estimates of total runoff (sum of surface and sub
surface runoff) (Figs. 6 and 7) and observational estimates of water level 
in one of the major reservoirs in Afghanistan (Fig. 8), as indicators of 
hydrologic drought. Fig. 6 shows the probability of March–July 
(MAMJJ) runoff being below normal during La Niña versus El Niño 
years. In general, runoff tends to be higher during those months as 
shown in Fig. S1 

The probability of below normal MAMJJ runoff is considerably 
higher during La Niña years, often above 50%, with the main exceptions 
being the part of the Southwest region in the Helmand basin (Fig. 6). The 

Fig. 2. Probability of Standardized Precipitation Index (SPI) being in the lower tercile in October–December, December–February and March–May seasons. The blue 
color polygons indicate Famine Early Warning Systems Network (FEWSNET) livelihood zones that rely on rainfed agriculture, and the gray color polygons indicate 
the boundary of the main sub-regions in Afghanistan (as in Fig. 1). Statistical significance at 95% confidence level is indicated by the hatches (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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probability of below normal runoff is the highest in the Northern basin, 
western Hariord-Murghab basin, western parts of Helmand basin, and 
parts of Kabul basin. All those basins include sub-regions with irrigated 
wheat production (Fig. 1). The probability of drought during El Niño 
years is generally below 33% across the country 

Again, in order to provide a better understanding of the impact of La 
Niña on hydrologic drought (and water availability), in Fig. 7 we show 
the composites of runoff volume aggregated over the MAMJJ season in 

respective basins, for La Niña versus El Niño years. We also calculate the 
percentage difference in the median values of both composites to pro
vide modeled estimates of decrease in water supply during La Niña years 
relative to El Niño years. These estimates of reduction in MAMJJ total 
runoff vary from 28% to 42%. In this figure as well, the order of basins is 
according to their contribution to the water resources of Afghanistan. In 
the top three contributing basins, the reduction in total runoff volume 
ranges from 28% to 34%. This reduction in total runoff is likely to mean 

Fig. 3. Probability of Standardized Precipitation Evapotranspiration Index (SPEI) being in lower tercile in October–December, December–February and March–May 
seasons. The blue color polygons indicate Famine Early Warning Systems Network (FEWS NET) livelihood zones that rely on rainfed agriculture, and the gray color 
polygons indicate the boundary of the main sub-regions in Afghanistan (as in Fig. 1). Statistical significance at 95% confidence level is indicated by the hatches (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Probability of standardized snow water equivalent (SWE) anomalies being in lower tercile in January–March season, which is the peak of the snow accu
mulation season in Afghanistan. The green color polygons indicate the boundaries of five of the major basins in the country. The probability values are only shown for 
grid cells that climatologically receive at least 10 mm of SWE during the month of March. Statistical significance at 95% confidence level is indicated by the hatches 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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decreased water availability for irrigation during the La Niña years in 
those regions 

Next, we also examine the ENSO impacts on the reservoir level in 
Afghanistan. The water level generally is the lowest during the start of 
the water year, attaining its peak in May. We compare the composites of 
standardized anomaly of the mean WY water level during La Niña and El 
Niño years (Fig. 8, top left panel). During La Niña years the standardized 
anomalies are generally lower than El Niño years. The median 

standardized anomaly during La Niña [El Niño] years being ~ -0.6 
[~+0.8]. We also show the standardized anomalies for individual years 
in the same figure (top right panel), which helps highlight (a) the gen
eral pattern of WY water level anomalies being below 0 during La Niña 
years and above 0 being in the El Niño years, and (b) the exceptions to 
that general pattern, and (c) the lowest water levels on record coincided 
with double La Niña years (2 consecutive La Niña years) 

We also display (Fig. 8, bottom panel) the absolute water levels in 

Fig. 5. Composites of basin-accumulated snow water equivalent (SWE) volume during La Niña (blue box) and El Niño (red box) years in five of the major basins in 
the country. The black line inside the box shows the median of SWE compositesThe corresponding whisker caps display the values within 1.5 times the interquartile 
range at both ends. The circle markers show the outliers beyond that range. Differences in the median (i.e. Median diff) of each composite for each of the basins are 
also shown. The green [brown] dotted line indicates the upper [lower] tercile. Number of El Niño [La Niña] events is 13 [15] respectively(For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. Probability of standardized total water year runoff anomalies being in lower tercile. The green color polygons indicate the boundary of five of the major 
basins in Afghanistan. Statistical significance at 95% confidence level is indicated by the hatches(For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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Fig. 7. Composites of basin accumulated March–July total runoff volume during La Niña and El Niño years in five of the major basins in Afghanistan. The black line 
inside the box shows the median of runoff composites. The corresponding whisker caps display the values within 1.5 times the interquartile range at both ends. The 
circle markers show the outliers beyond that range. Differences in the median (i.e. Median diff) of each composite for each of the basins are also shown. The green 
[brown] dotted line indicates the upper [lower] tercile. Number of El Niño [La Niña] events is 13 [15], respectively(For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. Composites of standardized anomalies of mean water year (WY) water level during La Niña and El Niño years in Kajaki reservoir (Top left). The black line 
inside the box shows the median of each composite. The corresponding whisker caps display the values within 1.5 times the interquartile range at both ends. 
Standardized anomalies of mean WY water level for each of the years between 1991 and 2022, with the color of each bar indicating if the year was La Niña, Double La 
Niña, El Niño, or Neutral year (Top right). Monthly water level for March–July month when the water level is generally the highest in a given WY for each of the years 
where color of the solid dots shows if the year was La Niña, Double La Niña, or El Niño (Bottom Left)(For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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Kajaki reservoir during the MAMJJ months of La Niña, double La Niña 
and El Niño years. Here we focus on MAMJJ months as typically the 
water levels tend to be the highest during that period of the year. The 
distinction in water level during La Niña and El Niño years during in
dividual months’ water level is apparent here as well. Water level tends 
to be lower during La Niña years than during El Niño years. Water level 
reached below 1 015 m during La Niña years only with the lowest values 
(up to ~1002 m) coinciding with double La Niña years. Conversely, the 
highest values, in general, coincided with El Niño years (with 
exceptions) 

3.4. ENSO based agricultural drought outlook 

Next, we focus on the impacts of ENSO on agricultural drought 
outlook using two widely used remote sensing based datasets, the 
Evaporative Stress Index (ESI) (Fig. 9) and eMODIS NDVI (Fig. 10). 
Fig. 9 shows the probability of ESI-12 being below normal from 
February to May, months that are crucial for both irrigated and rainfed 
wheat growing seasons. Note that ESI-12 for February [May] month 
depicts the average drought conditions over December to February 
[March to May] and so on 

In general, the pattern of the regions with highest probability of 
agricultural drought (defined by ESI < − 0.44) is consistent with what 
we have seen based on the preceding results. Agricultural drought 
during La Niña, as per ESI, is most likely to be experienced in North, 
West, and Northeast regions than in the rest of the country. The prob
ability of drought seems to be higher during the 12 weeks ending in 
February and March than during the 12 weeks ending in April and May 
months. In North and Northeast regions, at least through April, the 
probability of below normal ESI is statistically significant, which would 
have important implications for agricultural production as those are 
among the main wheat producing regions in Afghanistan. Finally, 
consistent with previous results, the probability of agricultural drought, 
as per ESI, during El Niño years is almost always below 33% 

We next examine the impacts of ENSO on agricultural drought 
outlook using eMODIS NDVI (Fig. 10). In this analysis, we also attempt 
to classify the influence of ENSO on agricultural droughts in rainfed 
versus irrigated regions (Pervez et al., 2014). We make use of the stan
dardized anomalies of April NDVI values (similar results for May and 

June NDVI are shown in Figs. S2 and S3), as in general, that is when the 
NDVI values start to peak in the country. Additionally, FEWS NET 
typically uses April NDVI values to provide first estimates of wheat 
production in the country, hence examination of April NDVI has a direct 
application of food insecurity early warning. Fig. 10 shows the proba
bility of April NDVI being below normal during La Niña versus El Niño 
years in the rainfed regions (top panel) and irrigated regions (bottom 
panel). The mask used for classifying rainfed versus irrigated regions is 
based on eMODIS NDVI and was from Shahriar Pervez et al., 2014 

The probability of below normal NDVI is particularly high in the 
rainfed regions, generally always above 60% and often above 80%, 
especially in the North, Northeast, and West sub-regions. The proba
bility during El Niño years is generally below 33%, which is consistent 
with the analysis of different datasets thus far 

The bottom panel shows the probability of below normal NDVI, but 
for irrigated regions, which has substantially higher implications for the 
food security in the country. This indicates that even in the irrigated 
parts of North, Northeast and West regions NDVI is likely to be below 
normal during the La Niña years. The probability of below normal for 
those regions is generally higher than 60%. This result indicates that 
both the irrigated and rainfed areas in this region experience adverse 
impacts due to La Niña, particularly in the North, Northeast, and West 
sub-regions of Afghanistan. In the rest of the irrigated regions, the es
timates of the probability of April NDVI being below normal, are a little 
more mixed. The most notable is the NDVI over the intensively irrigated 
regions in southwest Afghanistan (in Helmand valley) where the prob
ability values are closer to 33–40% 

3.5. ENSO based agricultural yield outlook 

Next, we examine ENSO based outlook of the agricultural yield. 
Fig. 11 shows the total wheat yield record time-series (top left) con
structed using MAIL and USDA PSD data. We first compared the com
posites of total wheat yield at country level (note that USDA PSD data 
are only available at country level) for La Niña versus El Niño years. 
Although the median yield of El Niño composite is higher than that of La 
Niña, the difference between both composites is not statistically signif
icant as per Wilcoxon Rank Sum Test 

We then examine the effect of ENSO on wheat yield at sub-regional 

Fig. 9. Probability of evaporative stress index (ESI) during 12 weeks ending in the months of February through May, which are critical months during the wheat 
growing season. The blue color polygons indicate the boundary of the livelihood zone depending on the rainfed agriculture and the green polygons indicating the 
boundary of the livelihood zone depended on intensive irrigated agriculture. Statistical significance at 95% confidence level is indicated by the hatches(For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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scale for both irrigated (Fig. 11 bottom left panel) and rainfed wheat 
(Fig. 11 bottom right panel). The order of sub-regions is based on the 
order of the mean production for irrigated or rainfed wheat respectively. 
For irrigated wheat, we find a few instances when yield composite for La 
Niña years is lower than El Niño years, particularly in Southwest, North, 
and West regions (all of which are important producers of irrigated 
wheat) in the region but the difference in the composites is not statis
tically significant 

Whereas in the case of rainfed wheat yield we find more instances of 
La Niña composites being lower than El Niño years and at least a few 
cases when the difference between these composites is statistically sig
nificant at least at 90% confidence level. Those regions include North
east, West, and South (significant at 90% confidence level) and Central 
region significant at 95% confidence level. It is important to note that 
the lack of statistical significance can also be due to data quality of 
wheat reports. Nonetheless, some of the important wheat producing 
regions do tend to have lower yields during the La Niña years than El 
Niño years, those regions include North, Northeast (mainly for rainfed), 
and West 

3.6. ENSO impacts as per historical food security and crop conditions 
reports 

Lastly, we also examined the historical food security outlook reports 
produced by FEWS NET and GEOGLAM’s CM4EW crop condition re
ports (https://www.cropmonitor.org/crop-monitor-for-early-warning) 
to verify the results of this study with documented impacts of past La 
Niña events on drought, agricultural production, and food insecurity in 
Afghanistan. The FEWS NET has been providing food security analysis in 

Afghanistan since 2004, and CM4EW has been providing crop conditions 
reports over Afghanistan consistently since the 2016/2017 season 

In the FEWS NET’s archive of food security outlook reports 
(https://fews.net/middle-east-and-asia/afghanistan), 2005/06, 2007/ 
08, 2008/09, 2010/11, 2011/12, 2017/18, 2020/2021 and 2021/22 
were La Niña years. Upon review of the food security outlook report that 
often comes out post June, coinciding with the harvest season, we find 
that in all the La Niña years, except for 2008/09 and 2011/12 seasons, 
agricultural production was adversely affected which contributed to a 
worsening of food insecurity outlooks. The FEWS NET reports frequently 
documented adverse impacts on North, Northeast, West rainfed areas 
and at least in a few cases, irrigated areas in that region as well, 
consistent with the findings of this study (Table 2) 

Additionally, in the short archive (going back to 2016/2017 only) of 
CM4EW crop conditions reports for Afghanistan “Winter Wheat” 
(mainly irrigated) and “Spring Wheat” (mainly rainfed) season also 
indicated “Failure” and “Poor” conditions for “Spring Wheat’’ during the 
harvest following the 2017/18 and 2020/2021 La Niña events, partic
ularly in the northern and northeastern regions (https://www.crop 
monitor.org/archive). In both cases, the “Winter Wheat” conditions 
(mostly irrigated) in North and Northeast regions were also indicated to 
be “Poor” or “Failure” (Fig. 12) 

Thus, the FEWS NET food security outlook report archive and 
CM4EW reports archive are also generally consistent with the findings 
based on multiple drought indicators used in the analysis, regarding the 
adverse impacts of La Niña on drought in Afghanistan 

Fig. 10. Probability of standardized anomalies of mean April normalized difference vegetation index (NDVI) being in lower tercile during La Niña and El Niño years. 
The top figures show the probabilities in rainfed regions only and the bottom figures show the same for irrigated regions only. The blue color polygons indicate the 
boundary of the livelihood zone depending on the rainfed agriculture, and the green polygons indicate the boundary of the livelihood zone depending on intensive 
irrigated agriculture(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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4. Conclusion and discussion 

Afghanistan is amongst the most food insecure countries in the world 
(GHI 2022). Drought is one of the several drivers of food insecurity. Past 
studies have examined the influence of ENSO on Central Asia, Southwest 
Asia climate and highlighted that La Niña is generally associated with 
higher chances of below average winter seasonal precipitation. How
ever, several open questions regarding ENSO influence on drought in 
Afghanistan and variability in its influence in the country remained 

In this study, using multiple indicators of different flavors of 
droughts – meteorological, hydrological, agricultural – as well as 
available wheat yield reports, we aim to answer the central question: 
What is the influence of ENSO on the drought outlook in Afghanistan 
and how does that influence vary spatially? To examine ENSO influence 
on drought outlook we compare the probability of drought indicators 
being in lower tercile during La Niña versus El Niño years. Application of 
multiple drought indicators and datasets is done to ensure that findings 
of this study are not specific to the choice of indicator or dataset. 
However, data quality can be inherently a potential source of un
certainties. Figs. S5 and S6a show the number of stations ingested in 
CHIRPS is low (varying from less than 10 to about 50) but consistent 
with lack of stations used in past studies focused on Afghanistan (Dost 
et al., 2023; Qutbudin et al., 2019; Shokory et al., 2023). Also as shown 
in Fig. S6, other gridded rainfall datasets that include in situ data such as 
GPCC (Schamm et al., 2014; Schneider et al., 2014, 2022) and 
APHRODITE (Yatagai et al., 2009) also face similar lack of in situ in
formation in Afghanistan (Figs. S6b and S6c). CHIRPS, however, is not 
solely based on in situ rainfall reports and uses satellite-derived, 
infrared, temperature-based precipitation estimates as an input as well 
(Funk et al., 2015a). Nonetheless, we used three other precipitation 
datasets to examine the probability of SPI being in lower tercile during 

Fig. 11. Total wheat yield at national level as sourced by Afghanistan Monistry of Agriculture, Irrigation and Livestock (MAIL) and United States Department of 
Agriculture’s Foreign Agricultural Service’s Production Supply and Distribution (USDA PSD) (top left), composites of total wheat yield at national level for La Niña 
versus El Niño years during 2002–2022 period (top right), composites of wheat yield at sub-regional level for La Niña versus El Niño years during 2002–2019 period 
for irrigated wheat (bottom left) and for rainfed wheat (bottom right). The black line inside the box shows the median of each composite. The corresponding whisker 
caps display the values within 1.5 times the interquartile range at both ends. The order of the sub-regions in the case of irrigated and rainfed wheat is based on the 
order of the mean production for respective production reports over 2002–2019. * indicates statistical significance of difference in both composites at 90% confi
dence level, and ** indicates the same at 95% confidence level 

Table 2 
Excerpts from the FEWS NET reports focusing on agricultural production and 
food security conditions during the La Niña years listed above  

La Nina 
events 

Excerpts from FEWS NET food security report 

2021/22 “At the national level, both rainfed and irrigated wheat production is 
likely to be below average, with northern and northeastern rainfed 
areas expected to experience the greatest deficits. Additionally, 
below-average snowfall during the 2021/22 wet season has led to 
below-average irrigation water availability. This will likely lead to 
below-average production of second season crops (including rice, 
maize, vegetables, and cash crops), with downstream areas worst 
affected.” (FEWS NET, 2022) 

2020/21 “Conflict and poor agricultural production expected to drive 
deteriorating food security in Afghanistan” (FEWS NET 2021) 

2017/18 “Drought, Conflict, and Displacement drive food insecurity across the 
country” (FEWS NET 2018) 

2010/11 “The 2011 wheat harvest will leave a 2 million metric ton national 
deficit, with most crop losses occurring in rainfed areas in the north, 
central, and western provinces.” (FEWS NET 2011) 

2007/08 “Below–average precipitation and early snowmelt during the 2007/ 
08 winter season have led to below–average wheat production and 
pasture conditions. Labor migration, not typical for this time of year, 
is widespread, and access to drinking water is deteriorating.” “The 
impact of the current drought is most severe in areas which depend 
on rain– fed agriculture, rather than irrigation. Ninety percent of 
rain– fed wheat acreage has no yield while irrigated wheat yield is 
likely to decrease by 20–30 percent in areas of the northwest where 
farmers are faced with water shortages”. (FEWS NET, 2008) 

2005/06 “Drought causes food and water shortages in the north”. “Inadequate 
and poorly distributed precipitation during the 2005/06 winter has 
resulted in a 50 percent loss of rain-fed cereal production in northern 
Afghanistan and caused severe water shortages.” (FEWS NET 2006)  
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ENSO events to compare with the results of section 4.1 (Fig. S7). Despite 
the differences in the mean seasonal precipitation (Fig. S8a) and stan
dard deviation (Fig. S8b) amongst different datasets, all of the datasets 
indicate higher probability of SPI being in lower tercile during La Niña 
versus El Niño years (Fig. S7) 

Similarly for snow drought we compared the results obtained using 
FLDAS JFM SWE (McNally et al. 2017; 2022) with ERA5-Land JFM SWE 
(Fang and Leung 2023; Gottlieb and Mankin 2024; Muñoz-Sabater et al. 
2021,; Tarek et al., 2020) and find the La Niña versus El Niño years 
diversity in the snow drought probability to be consistent in both 
datasets (Fig. S9), despite the differences in mean and standard devia
tion of JFM SWE among both datasets (Fig. S10). This study, however, 
does not account for glacier melts and its contribution to runoff, which 
can be particularly critical for Amu Darya and Kabul basins where most 
of the glaciers in Afghanistan reside and are reported to be declining 
since 1990s, due to a warming trend (Maharjan and Coauthors, 2021; 
Shokory et al., 2023) 

Lastly, this study focuses exclusively on understanding ENSO’s 
impact on droughts in Afghanistan with the goal of leveraging the 
skillful long-lead ENSO forecasts (Ham et al., 2019; Lou et al., 2023) to 
provide a long-lead drought outlook in Afghanistan to support early 
warning of food insecurity. However, as the growing season approaches 
it is important to consider the impacts of other large scale climate os
cillations and regional factors, which are known to modulate (amplify or 
dampen) ENSO’s impacts on subseasonal to seasonal climate in 
Afghanistan. These climate oscillations include North Atlantic Oscilla
tion (Syed et al., 2006), Indian Ocean Dipole and West Pacific sea sur
face temperatures (Ashok and Saji 2007; Barlow et al., 2002) and 
Madden–Julian oscillation (Nazemosadat et al., 2023). Additionally, the 
teleconnections through east Pacific or central Pacific El Niño events are 
different (Alizadeh-Choobari 2017), and ENSO’s teleconnections are 
influenced by natural decadal variability and global warming (Alizadeh, 
2022a, Alizadeh, 2024, Alizadeh, 2022b). This variability in ENSO’s 
teleconnection and influence of other climate oscillations warrant 
consideration in early warning of drought outlooks in Afghanistan 

With the above caveats, the primary conclusions of the study are as 
follows  

(1) Probability of drought in Afghanistan substantially increases 
during La Niña years (often >50% and reaching >70% in some 
cases) particularly in North, Northeast, and West regions where 
probability of below normal, tends to be statistically significant, 
as per multiple indicators. Also, the probability of below normal 
drought during El Niño years is generally lower than 33%  

(2) La Niña years increase the probability of a snow drought in 
Afghanistan, with estimated average decrease in SWE volume 
over the five major basins in the country to be between 9% and 
30%, with statistical significance in parts of Amu Darya basin 
which is the leading source of water resources in Afghanistan  

(3) La Niña also increased the probability of hydrologic drought with 
the probability of March–July (MAMJJ) simulated total runoff 
being below normal reaching >60% (particularly in the Harirod- 
Murghab, Helmand, and Kabul basins). MAMJJ total runoff vol
ume is estimated to be reduced (on average) by 28%–42% in the 5 
major basins in Afghanistan. It is also shown that mean WY water 
level as well as water level in the peak months, in the case of 
Kajaki reservoir, is generally lower during La Niña years (average 
standardized anomaly of ~ -0.6) versus El Niño years (average 
standardized anomaly of +0.8). In the available record, the two 
years with the lowest water level coincide with double La Niña 
(two La Niña in a row) years  

(4) La Niña also increases the probability of agricultural drought and 
decreases wheat yields mainly in rainfed regions but to a lesser 
extent in irrigated regions as well particularly in North, North
east, and West sub-regions. The probability of April NDVI being 
below normal is found to be higher than 70% in the rainfed and 
irrigated areas of Northeast, North, and West regions. This result 
is at least partly supported by the wheat yield reports which may 
have data quality issues. Nonetheless, wheat yield composites for 
La Niña years tend to be lower than El Niño years for all reports of 
rainfed wheat and in some cases for irrigated wheat. The differ
ence in La Niña and El Niño composites are not statistically sig
nificant for any of the irrigated wheat yield reports but are 
significant for Northeast (the second largest producer of rainfed 
wheat), West, and South regions at 90% confidence level and for 
the Central region at 95% confidence level 

We also compared the main findings of this analysis with FEWS NET 
and CM4EW reports and found them to be generally in agreement, 
specifically La Niña years, in general, coincided with reports of drought 
and worsening food insecurity (FEWS NET reports) with some excep
tions such as 2008–09 and 2011-12 seasons, and with “Failure” or 
“Poor” crop conditions as per CM4EW crop classification reports. 
However, we also acknowledge that some of the drought indicators used 
in this analysis were also considered in the reports by FEWS NET and 
CM4EW. For example, CHIRPS precipitation and eMODIS NDVI (now 
replaced with eVIIRS NDVI) often appear in those reports but those re
ports are also based on the expert judgments in the region and field 
reports (e.g. in situ data, as well as reports from key informants), and 

Fig. 12. End of season “Winter Wheat” (top panel) and “Spring Wheat” (bottom panel) crop conditions as reported by Crop Monitor for Early Warning (CM4EW) 
during 2016/2017 to 2020/2021 season. The crop conditions are classified as one of the three categories “Failure,” “Poor,” and “Favorable.” The font color of the 
season in the title for each year indicates if the year was a La Niña (blue color) or an El Niño (red color) year(For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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additional inputs from multiple early warning systems and agencies 
(Becker-Reshef et al. 2020; Funk et al. 2019) thus they do not exclusively 
rely on the indicators used in this analysis. Additionally, some of the 
indicators used in this analysis become operational post 2015 (e.g. SPI, 
SPEI, FLDAS) so they were not used in the pre-2015 FEWS NET reports 

Also, although we used several different indicators to examine the 
impacts of ENSO on seasonal droughts, a future study could also 
examine ENSO impacts on other important characteristics which can 
contribute to poor agricultural outcome and worsening of food insecu
rity, flooding, such as length of the rainy season, rain versus snow 
events, increase in number of hot and dry days, as well as the changes in 
timing of the reservoir filling, groundwater recharge. Nonetheless, the 
results of this study are directly applicable to early warning systems that 
focus on food security in the region. The findings indicate that in gen
eral, in a La Niña year, it is prudent to operate under the assumption that 
rainfed agricultural production particularly in North, Northeast, and 
West regions will be adversely affected and that some of the irrigated 
areas in those regions may experience production shortfall as well. 
Recent studies have shown a promising level of skill in long-term ENSO 
forecasts. For example, North American Multimodel Ensemble (NMME) 
models are shown to have skillful ENSO forecasts for up to 12 months in 
the future (Barnston et al., 2019; Tippett et al., 2019). Similarly, it is 
shown that with the application of deep learning methods, skillful ENSO 
forecasts can be made for up to 18–24 months in advance (Ham et al., 
2019; Lou et al., 2023). Combined with these advances in ENSO fore
casting and the knowledge of ENSO based drought and agriculture 
outcome outlook in Afghanistan, early warning agencies could be pre
pared for the development of food insecurity up to 1–2 years in advance 

Lastly, the presented framework can be used for analyzing impacts of 
ENSO (or other multiyear climatic oscillations) on droughts in other 
climatically vulnerable regions using open-access datasets with global 
span. It is often the case that most climate-sensitive regions are also 
marked by a lack of in situ datasets either spatially or temporally and 
often leading to a greater need for reliance on global datasets such as 
those used in this study 
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