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Abstract
Advanced skill in seasonal climate prediction coupled with sectoral decision models can
provide decision makers with opportunities to benefit or reduce unnecessary losses. Such
approaches are particularly beneficial to rainfed agriculture, the livelihood choice for the
majority of the world’s poor population, for which yields are highly sensitive to climate
conditions. However, a notable gap still exists between scientific communities producing
predictions and the end users who may actually realize the benefits. In this study, an
interdisciplinary approach connecting climate prediction to agricultural planning is
adopted to address this gap. An ex ante evaluation of seasonal precipitation prediction
is assessed using an agro-economic equilibrium model to simulate Ethiopia’s national
economy, accounting for interannual climate variability and prediction-guided agricultur-
al responses. Given the high spatial variability in Ethiopian precipitation, delineation of
homogeneous climatic regions (i.e., regionalization) is also considered in addition to
growing season precipitation prediction. The model provides perspectives across various
economic indices (e.g., gross domestic product, calorie consumption, and poverty rate) at
aggregated (national) and disaggregated (zonal) scales. Model results illustrate the key
influence of climate on the Ethiopian economy, and prospects for positive net benefits
under a prediction-guided agricultural planning (e.g., reallocation of crop types) strategy,
as compared with static business-as-usual agricultural practices.

1 Introduction

Climate plays a critical role in agriculture, effecting planting dates; investment decisions such as
seeds, fertilizer, and insurance procurement; and in-season management. Advanced skill in seasonal
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climate prediction coupled with sectoral decision models can provide decision makers with
opportunities to benefit or reduce unnecessary losses. Such approaches are particularly beneficial
to rainfed agriculture, the livelihood choice for the majority of the world’s poor population, for
which yields are highly sensitive to climate conditions. Literature exploring how climate variability
influences agriculture surveys and interviews characterizing farmer perspectives, and implementa-
tion and outcomes demonstrate the demand for climate prediction and its substantial potential benefit
to agriculture and the whole economy (e.g., Alexandrov and Hoogenboom 2000; Palosuo et al.
2011; Patt et al. 2005; Roncoli 2006; Roncoli et al. 2009; Semenov and Porter 1995). However, a
notable gap still exists between scientific communities producing predictions and the end users who
may actually realize the benefits. Factors such as predictions being too general, communication
failure, lack of governmental or institutional support, little access to information, low capacity to
respond, and data scarcity have constrained the widespread application and uptake of seasonal
prediction information, particularly for smallholder farmers in less-developed countries (Broad and
Agrawala 2000; Hansen 2002; Hansen et al. 2011).

An interdisciplinary approach connecting climate prediction to agricultural planning may help to
fill this gap, particularly when the information is tailored and communicated in a manner relevant to
decision makers. An ex ante evaluation of a coupled prediction system can indicate a quantitative
measurement of expected sectoral benefits given a range of potential response strategies—a more
agricultural-centric image than purely climate predictions alone. An ex ante evaluation of seasonal
prediction may also be beneficial beyond providing actionable information to users by broadly
drawing attention to smallholder farmers and institutions, and subsequently supporting mobilization
of funds and strategic planning in times of expected risk and need. Additionally, it can guide policy
and decision makers in resource allocation based on simulated net benefits specific to varying
stakeholder priorities (Meza et al. 2008; Thornton 2006). Thus, institutional processes could become
more supportive of seasonal prediction, alleviating key factors that impede successful applications.

A number of studies explore the expected economic value of seasonal climate forecasts on
agricultural systems at varying scales; a summary of relevant literature can be found in Meza
et al. (2008). Many studies focus on the value of El Niño Southern Oscillation (ENSO)–based
forecasts (e.g., Adams et al. 2003; Hammer et al. 1996; Letson et al. 2005; Marshall et al.
1996; Messina et al. 1999; Solow et al. 1998), while only a few investigate the value of
seasonal precipitation predictions and none addresses country-level outcomes (Jones et al.
2000; Katz et al. 1987; Mjelde et al. 1988; Wilks and Murphy 1986). Although the majority of
studies focus on rainfed crops, they all emphasize intensification of modern technology (e.g.,
fertilizer, pesticide, degree of mechanization) and commercial agriculture in general; subsis-
tence agriculture is consistently omitted (Meza et al. 2008).

In this study, an ex ante evaluation of seasonal precipitation prediction is assessed using an agro-
economic equilibrium model to simulate Ethiopia’s national economy, accounting for interannual
climate variability and prediction-guided agricultural responses. Given the high spatial variability in
Ethiopian precipitation, climate regionalization information is also considered in addition to growing
season precipitation prediction. The model provides perspectives across various economic indices
(e.g., gross domestic product, calorie consumption, poverty rate) at aggregated (national) and
disaggregated (zonal) scales. Agricultural production, particularly the dominant subsistence farming,
is explicitly modeled in this study. With 80% of the population living in rural areas and engaged in
farming, there is a high susceptibility to the impacts of climate variability (Dixon and Segerson
1999; Hansen 2002; Oram 1989). This motivates an innovative means of evaluating predictive
information, which can serve as a foundation for communication, decision-making, and strategic
planning.
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2 Methods

The Ethiopian economy-wide multi-market model (EMM; Diao and Pratt 2007), originally
developed by the International Food Policy Research Institute (IFPRI), is modified to (1)
simulate the zonal to country-level economy with a dynamic (varying) climate and (2) evaluate
climate prediction and regionalization (Zhang et al. 2016; Zhang et al. 2018) by comparing
various economic outputs (GDP, food consumption, and poverty) for prediction-guided
agricultural responses versus baseline (business as usual) agricultural planning.

2.1 Ethiopia’s economy-wide multi-market model

The EMM (Diao and Pratt 2007) is an economy-wide, multi-market model with two
aggregated sectors representing industry and service and a detailed structure of the
agricultural sector, including 32 agricultural commodities (both crops and livestock).
However, it does not explicitly model the backward and forward linkages between the
two non-agricultural sectors and the agricultural sector (Supplementary Materials). The
model is built on 56 administrative zones with available data. Supply and demand are
modeled at the zonal (administrative) level to capture producer responses to the market.
Agricultural supply is a function of yield and area, where yield is affected by climate
factors. The zonal level demand functions reflect consumer’s demand for each commod-
ity given its market price and per capita income. Price elasticity, including own-price and
cross-price elasticities, and income elasticity vary by zone and by commodity given
income levels and consumption patterns. Per capita income is endogenously determined
by dividing production revenue by population, allowing supply and demand to be linked
at the zonal level. The EMM is benefit-only—intermediate inputs and their costs are
omitted; thus, producer price is adjusted to represent the value added. Consequently, the
aggregation of zonal supply at its value-added price equals the gross domestic product
(GDP), differentiated as agricultural and non-agricultural GDP. Other output variables
such as poverty rate and calories per capita per day are also calculated given zonal
income levels and food consumption.

Multi-market linkages are established based on zonal price margins and national central
market prices in Addis Ababa. The price margins between markets are determined according
to the distance of each zone to Addis Ababa, representing the basic transportation costs. Food
surplus zones (supply exceeds demand) face a lower commodity price than at the central
market, with the difference being the marketing margins at equilibrium. Food deficit zones, in
contrast, endure higher prices equal to the price at the central market plus the transportation
costs. The model also captures international imports and exports with the assumption that the
domestic and international commodities are perfect substitutes but distinguished by transpor-
tation and other market costs. For example, if the supply of maize decreases along with an
increasing domestic price, the import of maize from other countries is only profitable when the
domestic price exceeds the import parity price plus any transaction costs. Similarly, the
domestic price of one commodity has to be low enough to trigger export. Consequently, the
aggregated supply and demand of each commodity reach equilibrium at the national level.

The model is calibrated for the base year 2003, using data from national household surveys,
agricultural sample surveys, geographic information system, and other national and regional
data (Supplementary Materials). More detailed information about the EMM can be found in
Diao and Pratt (2007).

Climatic Change (2020) 158:435–451 437



2.2 Incorporating climate variability into the EMM (baseline)

Climate yield factors (CYFs; Block et al. 2008) represent the overall effect of climate on
crop yield, based on the Yield Response to Water (Doorenbos and Kassam 1979), and
Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements (Allen
et al. 1998). The CYFs are calculated through a process-based crop growth model
(Supplementary Materials). The model is particularly useful when water is the limiting
factor (as in our study region) with highly varied spatial-temporal rainfall patterns and
predominantly rainfed subsistence agriculture. The CYF for six staple crops in Ethiopia
are modeled, including teff, maize, wheat, sorghum, millet, and barley.

CYF calculation takes gridded monthly climate data as inputs including elevation,
cloud cover, temperature, diurnal temperature range, vapor pressure, and wind from the
University of East Anglia’s Climate Research Unit (CRU) (Harris et al. 2014). Reference
evapotranspiration (ET0) calculations based on these data are performed using the
Penman-Monteith method (Allen et al. 1998). Consequently, each grid cell has a unique
ET0 value for each month in each year from 1983 to 2011. Potential crop evapotranspi-
ration (ETC) for each crop in each grid cell is subsequently obtained by multiplying ET0

by a crop-specific empirical constant, Ks. Gridded monthly precipitation observations
from the National Metrology Agency (NMA) of Ethiopia (Dinku et al. 2014) and CRU
(Harris et al. 2014) and soil data from the FAO Digital Soil Map of the World (FAO-
UNESCO 1988) are used to obtain actual evapotranspiration (ETA) through a soil-water
balance model (Allen et al. 1998). The CYF is then determined according to the ratio of
ETA over ETC and a crop’s sensitivity to limited water availability using Ky, a crop-
specific empirical constant, where higher values indicate greater sensitivity to water
scarcity (Eq. 1). Low ETA/ETC ratios and high sensitivity to water stress (Ky) produce
relatively low CYF values, indicating a greater overall impact on crop yield due to water
scarcity. The specific equation is provided below:

CYF ¼ 1−Ky⋅ 1−
ETA

ETC

� �
ð1Þ

CYF values range from 0 to 1. A CYF = 1 implies that yields are not limited by water stress,
although limitation by other factors such as pests, soil fertility, and management skills is still
possible. A CYF = 0.9 indicates a 90% yield based on water availability. A CYF = 0 indicates
crop failure. Note that the calculation is performed for each crop stage—vegetative, flowering,
yield formation, and harvest—spanning different months given varying Ks and Ky values. The
lowest CYF across all stages in one annual cycle is retained as the final CYF; thus, each grid
cell has one CYF value for each crop in each year.

Since the EMM operates at a zonal level, the gridded CYF values are converted to
zonal values by overlaying zonal boundaries on the gridded region and calculating the
area-weighted average of CYF in each zone.

In this study, the CYF values in each year are used to incorporate dynamic climate
variability into the EMM, calibrated to the base year 2003, to create the baseline outputs
(Fig. 1). As all other inputs are held constant, whereas climate variability is the only
changing factor in the system, the baseline outputs reflect the economic influence due to
climate variability only. Year-to-year effects are not carried over; thus, each year is an
independent experiment without accounting for growth in population, crop area, etc.
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Spatial average CYF values for the five staple crops (barley and sorghum are almost
identical) illustrate that maize is the most sensitive to water stress and also has the largest
year-to-year variability (Fig. 2). The lowest spatial average CYF for maize occurs in
2002, a notorious drought year in Ethiopia, with a value below 0.5, indicating expected
yields of less than 50% of no water-limited conditions. In years with above-normal
precipitations, the spatial average CYF values for maize range from 0.65 to 0.7 (zonal
level CYF values range from near 0 to 1). In contrast to maize, teff is less sensitive to
drought, illustrated by high CYF values ranging from 0.74 to 0.87 (Fig. 2).

2.3 Integrating seasonal prediction and regionalization

A regional-average seasonal prediction of June to September (JJAS) precipitation, representing
the main rainy season and crop growing period in western Ethiopia, spanning 29 years (1983–
2011) (Zhang et al. 2018) is applied here. Western Ethiopia is the dominant agricultural
production region with 84.0% of the total population. The GDP and agricultural GDP in

EMM
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Precipitation

Zonal Climate 
Yield Factor

Gridded 
Climate Yield 

Factor

Area 
Reallocation 
Scenarios

Seasonal 
Precipitation 
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Outputs

Prediction-
Guided 
Outputs

Net Benefit

Fig. 1 Methodological flow chart. Solid lines indicate baseline simulation steps and dashed lines indicate
prediction-based steps

Fig. 2 Spatial average zonal climate yield factor (CYF) values over all 56 zones for five staple crops (color
should be used for this figure in print)

Climatic Change (2020) 158:435–451 439



western Ethiopia are 84.7% and 86.9% of the national GDP and agricultural GDP, respectively.
A categorical prediction of above-normal, near-normal, and below-normal intervals is imple-
mented to represent relatively wet, average, and relatively dry conditions. Intervals are selected
such that one-third of the historical observations fall into each category. This categorical
prediction format is consistent with the current operational seasonal forecasts issued by
NMA in Ethiopia (Korecha and Sorteberg 2013). To account for the high spatial variability
of JJAS seasonal precipitation in western Ethiopia, regionalization is provided with eight
clusters considered homogeneous in precipitation (Fig. 3; Zhang et al. 2016). Zones that fall
into the same cluster are likely to share the same climate conditions and therefore behave
similarly in terms of expected net benefits. Zones that fall into one or more clusters are
assigned to the cluster in which the greatest percent of its area falls. Overall, maize and teff
represent approximately 20% and 16% of all agricultural land in Ethiopia, respectively.
Agricultural land in western Ethiopia accounts for more than 90% of total country-wide
agricultural land; maize and teff represent approximately 15% and 21% of the total agricultural
land in the region. They are distinct from each other in terms of their sensitivity to water
stress—maize is more vulnerable to water stress, while teff can maintain higher yields under
such conditions. However, maize typically has a much higher yield per unit of planting area
than teff under ideal climate conditions, although maize is often sold for a lower price. Overall,
the economic value, which is a product of yield and price, per unit of planting area, is higher
for maize than that for teff under such climate conditions. Thus, maize may be more desirable

Fig. 3 Ethiopian administrative zones outlined in black and eight climate clusters in color used in the EMM
(adapted from Zhang et al. 2016). Zones without sufficient climate regionalization information are marked in
gray, labeled as “data unavailable” (color should be used for this figure in print)
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for above-normal precipitation conditions, while teff may be more valuable in years when
maize yields are likely to be reduced. In addition, maize and teff occupy 22.9% and 13.1% of
the total per capita calorie consumption per day on average, respectively, which are among the
top three crops with the highest calorie consumption (maize, wheat, and teff). To test the
sensitivity of reallocating maize to teff or vice versa, a range of land reallocation (5%, 10%…
to 95%) is explored. The total area devoted to these two crops remains unchanged from the
baseline and only includes crop areas where precipitation is the major factor affecting the yield
(excludes areas applying irrigation, fertilizer, pesticide, improve seeds, etc.). Further, if benefits
in excess of the baseline (net benefits) accrue under reallocation strategies and are correlated
with precipitation conditions, a skillful seasonal prediction may help prescribe the proper shift
in crop reallocation, applied either equivalently across all zones in western Ethiopia or
individually by zone.

Hence, a series of land reallocation strategies was implemented into the EMM to
understand possible net benefits under different precipitation conditions. Seasonal pre-
cipitation predictions and regionalization were then applied to guide land reallocation
strategies across zones, aiming to accrue positive net benefits given the predicted
precipitation conditions and associated reallocation strategies. The prediction-guided
land reallocation strategies were implemented into the EMM again under the actual
climate to estimate benefits, which were subsequently compared with baseline for net
benefit (Fig. 1).

2.4 Reallocation scenarios

Three scenarios are compared in this work:

(1) Baseline: a “business as usual” strategy with no year-to-year reallocation between teff
and maize. However, cropland allocation can vary by year based on climate variability.

(2) Uniform reallocation: reallocation between teff and maize applied uniformly across all
zones.

(3) Zonal reallocation: reallocation between teff and maize applied independently by zone.

Predictions, allowing farmers the opportunities to take pre-season alternative actions, are
applied to prescribe reallocation strategies for scenarios (2) and (3), either from teff to
maize or maize to teff (following Fig. 1). For scenario (3), zonal-level reallocation is
determined based on cluster-level regionalization (Zhang et al. 2016) and allows unique
strategies by zones.

3 Results

3.1 Baseline scenario

National GDP is strongly positively correlated with JJAS total precipitation (corr. = 0.68,
p < 0.0001; Table 1). Note that all GDP values here refer to real GDP, based on prices in
the base year (2003). Agricultural GDP, which is a large portion of total GDP, and grain
(staple crops) GDP have similarly high correlations with precipitation (corr. = 0.68 and
0.69, respectively, both p < 0.0001; Table 1). Unsurprisingly, in years with high JJAS
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precipitation, the total supply of commodities and GDP is higher due to preferable
climate conditions. Across the years explored, total GDP can vary by as much as 0.72
billion USD, fully attributable to climate variability (mainly precipitation reduction),
ceteris paribus (Fig. 4).

Total calories per capita per day also show a strong and positive correlation with JJAS
total precipitation (corr. = 0.64, p < 0.0005; Table 1), indicating that above-normal pre-
cipitation conditions result in more food and higher consumption. This applies to both
food deficit and surplus zones in general, though some spatial variability exists. Deficit
zones have a lower level of calorie consumption than surplus zones, with a mean
difference of 212 calories (Cal) per capita per day.

The number of poor people falling under the nationally defined poverty line (Diao
et al. 2005) is even more strongly correlated with precipitation than GDP and calories per
capita per day (corr. = − 0.73, p < 0.0001; Table 1). Poverty rates in rural areas reach 55%
in 1987 and 2002, approximately 10% higher than the poverty rates in years with
sufficient precipitation (e.g., 2007). As expected, urban poverty rates, ranging from 24
to 30%, are much lower than rural rates. The variability of poverty rates in urban zones is
also lower than that in rural zones, as the poverty rate in urban zones is less affected by
climate conditions. The total poverty rate is close to the rural poverty rate due to the
large proportion of the population living in rural areas.

3.2 Uniform reallocation scenario

Uniformly reallocating across zones from teff to maize generates a positive change in
GDP compared with the baseline in most years with above-normal precipitations, and

Table 1 Pearson correlation coefficients between spatial average JJAS total precipitation in western Ethiopia and
various economic indicators at country level over 1983–2011

GDP Agricultural
GDP

Grain
GDP

Calorie per
capita per
day

Poor
population

Price of
maize

Price of
teff

Import of
wheat

Corr. with
precipita-

tion

0.679*** 0.684*** 0.686*** 0.637** − 0.728*** − 0.563* − 0.228 − 0.690***

* p < .05, ** p < .0005, and *** p < .0001 under two-tailed t test
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Fig. 4 National real GDP and spatial average JJAS total precipitation in western Ethiopia for simulated years
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moderate to negative change in GDP for near- and below-normal precipitations (Fig. 5a).
Thus, reallocation from teff to maize appears warranted under above-normal precipita-
tions only. Interestingly, when reallocating from maize to teff, no positive change in GDP
is apparent under any precipitation conditions (Fig. 5b). While spatial variability could
play a role—there may be positive changes in some zones as investigated in the next
scenario—it appears that teff has already reached a saturation point relative to maize.
Thus, aggregated across all zones, the current allocation of teff and maize appears
suboptimal in some years.

The seasonal precipitation prediction model forecasts seven of the 29 years to be
above normal (Fig. 6), when reallocating from teff to maize appears beneficial. Five of
these years are actually above normal based on observations (1996, 1998, 2003, 2007,
and 2010); the two missed are near-normal years (1989 and 1994). Additionally, five
above-normal years are missed by the prediction model (1986, 1988, 1991, 1999, and

Fig. 5 Real GDP change (difference between reallocation scenario and baseline scenario) for all years under
uniform reallocations from teff to maize (a) and from maize to teff (b), and under zonal reallocations from teff to
maize (c) and from maize to teff (d), averaged over all area reallocation percentages (5%, 10%… 95%). Above-
normal, near-normal, and below-normal refer to precipitation conditions (color should be used for this figure in
print)
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2001). Thus, teff is reallocated to maize for the seven years with predicted above-normal
precipitation conditions across the full range of reallocating percentages.

As a result, average positive change in GDP from the baseline occurs in five of the seven
years; the two exceptions are 2003 and 1989, when the GDP decreases by 6.7 and 2.5 million
USD on average, respectively (Fig. 7a), even though 2003 is actually an above-normal year.
This is mainly attributable to heterogeneous distribution of precipitation across zones and
zones with large maize areas actually receiving less precipitation than average, even though the
spatially aggregated precipitation is high in 2003. Even reallocating a small fraction of teff to
maize in 2003 (5%) results in a 0.22 million USD reduction in GDP (Fig. 7b). In 1989,
although the average net benefit over all the reallocation percentages tested is negative, the
highest net benefit reaches 0.34 million USD under a reallocation percentage of 15% teff to
maize (Fig. 7b). In other predicted above-normal years, larger reallocation percentages gener-
ally result in larger positive changes in GDP, ranging from 9.9 to 27.3 million USD per year.
However, the incremental increase in GDP change gradually decreases, as the increments
become relatively small at 60% reallocation, where a 7.7 million USD increase in GDP is
achieved (Fig. 7b). For the above-normal years which the prediction model missed, the
average potential gain in GDP ranges from 1.4 to 24.5 million USD, including 1986 when
the average gain would have reached the highest among all years (Fig. 7a).

The average calories per capita per day for the above-normal predicted years also increase
from the baseline up to a maximum of 95 additional Cal (Fig. 8a). Calories from teff
consumption decrease gradually due to lower supply and increasing domestic price; however,
the calorie change becomes relatively constant at approximately − 50 Cal as teff starts to be
imported from other countries1 (Fig. 9). In 2003, the import quantity of teff is the lowest
among the above-normal years predicted, mainly due to a lower level of GDP in that year
which in turn constrains the domestic food demand.

Fig. 6 Seasonal prediction of JJAS precipitation average over the western Ethiopia region, 1983–2011

1 Ethiopia produces the most teff in the world. Eritrea, India, the USA, Australia, and Netherland also produce
teff. There is no teff import in the 2003 baseline and historically no known teff imports into Ethiopia. The import
of teff is triggered when 55% or more of the teff area is reallocated to maize, which is a modeling possibility, but
realistically less likely given the importance of this grain to Ethiopia.
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The change in poor population and poverty rate outcomes is notably different than GDP
and calories. Instead of best conditions occurring at large reallocation percentages, they occur
near 25% reallocation: 73,000 reductions in rural poor population, 5000 reductions in urban
poor population, and 0.12% reduction in overall poverty rate. At higher reallocation percent-
ages, the rural poverty actually increases, although urban poverty decreases, with an overall net
increase (Fig. 10a). This highlights the uneven welfare distribution given the uniform national
level reallocation policy considered.

3.3 Zonal reallocation scenario

By investigating outcomes at the cluster level, clusters associated with positive change in GDP
are identified respectively for reallocations from teff to maize and from maize to teff. Zones
that belong to those clusters are selected for reallocation. Consequently, reallocation from teff
to maize is applied to zones in clusters 2, 3, 6, 7, and 8, and reallocation from maize to teff is
applied to zones in cluster 1 (Fig. 3).

Fig. 7 Real GDP change (difference between reallocation scenario and baseline scenario) under uniform
reallocations from teff to maize averaged over reallocating percentages (a) and for each reallocating percentage
(b), respectively, and under zonal reallocations from teff to maize averaged over reallocating percentages (c) and
for each reallocating percentage (d), respectively. Years predicted as above-normal are marked with crosses (color
should be used for this figure in print)
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Under the zonal reallocation scenario for teff to maize, the average changes in GDP are
positive for all years (Fig. 5c) in contrast to the mixed positive and negative outcomes under
the uniform reallocation scenario (Fig. 5a). However, both scenarios illustrate an increase in
GDP change as precipitation increases. As for the zonal reallocations from maize to teff,
positive changes in GDP are noticeable in three below-normal years (Fig. 5d), in contrast to
negative net benefits in all years under the uniform reallocation scenario (Fig. 5b). The highest
positive change in GDP (39.2 million USD) is associated with the driest year of 2002. In other
years, the changes in GDP appear to be rather random, with most years illustrating little to no
change regardless of the precipitation conditions (Fig. 5d).

Therefore, zonal reallocations from teff to maize are applied for the same set of predicted
above-normal years as in the uniform reallocation scenario. The average change in GDP over
the predicted above-normal years reaches 19.7 million USD per year (Fig. 7c), which is more

Fig. 9 Quantity of teff imported under uniform reallocations from teff to maize for each predicted above-normal
year and each reallocation percentage. Note that teff is imported for large (> 50%) reallocation percentages only
(color should be used for this figure in print)

Fig. 8 Calorie per capita per day (Cal) change (difference between reallocation scenario and baseline scenario)
averaged over predicted above-normal years under uniform reallocations (a) and under zonal reallocations (b)
from teff to maize for each area reallocation percentage
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than three times that under the uniform reallocation scenario (6.2 million USD per year; Fig.
7a). The positive change in GDP increases with increasing area reallocation percentage, and
the trend is relatively linear with the highest positive change in GDP (36.6 million USD)
occurring at the largest reallocation percentage of 95% (Fig. 7d).

The calorie consumption per capital also increases with increasing reallocation percentage
(Fig. 8b). The average change in calorie consumption from maize and teff over the predicted
above-normal years is approximately 36 Cal at 95% reallocation, which is lower than the value
under the uniform reallocation scenario (95 Cal; Fig. 8a). The reallocation from teff to maize in
a subset of zones did not trigger the import of teff to meet domestic demand.

Considering the change in poor population averaged over the predicted above-normal
years, both rural and urban poor populations decline for all reallocation percentages. The total
poor population continues to decrease at higher reallocation percentages; however, the rate of
decrease is not constant with the steepest decrease occurring at 30%, 55%, and 80% (Fig. 10b).

4 Conclusions and discussions

In this study, climate variability is imposed on an agro-economic model to simulate its impacts
on Ethiopia’s economy. Distinguishing from traditional partial equilibrium multi-market
models, our model includes a service and industry sector in addition to a detailed agriculture
sector to simulate the impact of climate variability on GDP, consumption, and poverty. Climate
clearly plays an important role in Ethiopia’s economy with poverty rate being the most

Fig. 10 Change in poor population (rural and urban) and poverty rate (difference between reallocation scenario
and baseline scenario) over predicted above-normal years under uniform reallocations (a) and under zonal
reallocations (b)
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sensitive to total precipitation in the main rainy season. This is consistent with findings in Diao
and Pratt (2007) that growth in staple crops contributes strongly to poverty reduction. With
high rainfall variability in the productive agricultural region in western Ethiopia, the spatial
variance of crop production and therefore food security and economic well-being is high. As a
result, spatially explicit climate prediction becomes valuable for predicting crop yields and
further demands a spatially disaggregated agro-economic model to better inform adaptation
strategies. Such disaggregated models allow for adaptation strategies at regional or zonal levels
that may support increasing benefits, as illustrated in this study, and also enables evaluation of
outcomes across disaggregated regions for comprehensive policy-making.

Block et al. (2008) also implement variable climate into the EMM and compare with
economic outputs based on static (average) climate conditions. They illustrate that Ethiopia
can be highly, and potentially be adversely, affected by variable climate, based on projections
of future economy using stochastic variable climate sampled from the historical period and
projected model parameters. In contrast, this study utilizes historical climate observations for
the simulation periods to evaluate the impact of climate variability, holding all other param-
eters constant. In addition, we articulate the potential value of climate predictions (not just the
impact of variable climate) by addressing adaptive responses and alternative actions given the
prediction. In this study, land reallocation between crops is the adaptive response demonstrat-
ed, leveraging the spatially disaggregated seasonal precipitation prediction, to investigate
potential net benefits compared with a baseline (no forecast) approach. This framework can
easily be applied to alternative adaptive responses or prediction sources. For instance, predic-
tions from general circulation models (GCM) and climate forecast systems could also be
integrated and should be explored further; however, previous research (Zhang et al. 2018)
indicates that the statistical prediction model used in this study is superior to dynamical
predictions and is thus expected to result in higher net benefits.

In this study, in the seven years with predicted above-normal precipitation, reallocating
from teff to maize uniformly across zones results in an average of 6.2 million USD (at 2003
prices) additional profits. Calorie consumption also increases, indicating that in above-normal
precipitation years, both the maize value and its calories are higher than teff per unit of planting
area. However, poverty rate does not monotonically decrease with increasing GDP, revealing
an uneven distribution of welfare. Reallocation at the zonal level leads to additional positive
change in GDP, which increases to an average of 19.7 million USD over the same set of
predicted above-normal years. Additionally, zonal reallocations result in a continuous fall in
poverty rates as the reallocation percentage increases. Calorie consumption is however lower
under zonal reallocations than that under uniform reallocations. The resultant net benefits are
based on predicted precipitation conditions, although there is still potential to achieve higher
benefits by further improving prediction skill. Applying perfect prediction (observations),
additional profits increase to 92.0 million USD under uniform reallocation and 213.6 million
USD under zonal reallocation, compared with 6.2 and 19.7 million USD when actual
predictions are used.

It is also worth noting that high reallocation percentages may not be realistic, considering
access and availability of seeds and its significant effect on price fluctuation. Additional
analysis is required from a social-economic perspective to further guide policy in response
to climate prediction and associated agricultural land reallocation. This study provides an
initial effort in reducing the gap between the scientific community and policy makers by
converting climate predictions into expected economic outcomes for consideration by decision
makers.
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The evaluation of net benefits attributable to prediction and regionalization in this study is
restricted to a single adaptation strategy. Although reallocating between maize and teff is
considered a realistic adaptation strategy, as in general, there is evidence that areas growing teff
also grow maize across different agro-ecological systems (AES) (Tessema and Simane 2019),
particularly in the midland, wetland, and lowland AES, where both maize and teff are plentiful
and rotated from year to year (e.g., Gizaw et al. 2018); reallocation between crops other than
maize and teff and dynamic reallocation (i.e., reallocation percentages change annually) based
on probabilistic seasonal climate forecasts could be explored. Additional scenarios with
modern agricultural technologies (fertilizer, improved seed) applied according to predictions
may also warrant investigation. Given the demonstrated spatial heterogeneity, addressing such
scenarios at the zonal level could potentially further increase expected benefits. Categorical
precipitation prediction intervals could also be individualized at the zonal level to better
prescribe reallocation.

The purpose of this study is not to optimize the value of using prediction and regionaliza-
tion, rather to present an innovative way to evaluate the benefit of climate prediction
information using economic indices at national and zonal levels. Such analysis can provide
a foundation for communication, decision and policy-making, and strategic planning.

In addition, although the EMMmodel captures the detailed agricultural sector in Ethiopia, it
does not specifically include all aspects related to food security, including governmental
policies and international food aid. These external policies may have some effect on farmers’
decision-making and potentially enhance overall benefits, which is desirable but may dampen
the effect of capturing climate variability through prediction and subsequent adaptation
strategies. Additionally, labor migration is not captured in the model. This may affect
household income and expenditure patterns; however, the effects on agricultural production
are likely minor compared with the effects of climate variability. Finally, there has been
increasing awareness of land degradation and soil erosion due to unsustainable farming
practices; these also are not included in the model but may warrant further attention particu-
larly if environmental conditions become critical constraints in agricultural production in the
future.
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